Lesson 5

The backpropagation algorithm

s
N “ Andrea Asperti 1

Backpropagation algorithm

The backpropagation algorithm is simply the instantiation of the
gradient descent technique to the case of neural networks.

Specifically, it provides iterative rules to compute partial derivatives
of the loss function with respect to each parameter of the network.

In the following, we shall discuss it in the case of dense networks
and shall hint to extensions to convolutional networks and
recurrent networks at proper places.

Andrea Asperti 2

Computing the gradient

In the previous lesson we computed the gradient by hand for a
simple linear net.

But a neural network computes a complex function obtained by
composition of many neural layers. How can we compute the
gradient w.r.t. a specific parameter (weight) of the net?

We need a mathematical rule known as the (for
derivatives).

Andrea Asperti 3

The chain rule

Given two derivable functions f, g with derivatives f’ and g’, the
derivative of the composite function h(x) = f(g(x)) is

H(x) = f'(g(x)) * £'(x))
Equivalently, letting y = g(x),

df dg

H() = Fg() +£'(0) = F(y) rg'() = G =

=/ Andrea Asperti 4

Multivariate chain rule

Given a multivariable function f(x, y) and two single variable
functions x(t) and y(t)

d _ Ofdx Of dy
ﬁf(x(t),)/(f)) = 87]+@E
—_—

derivative of composition

In vector notation: let v(t) = [X(t)} then
y(t)
d

LA () = V()
——

L. o dot product of vectors
derivative of composition

where Vf is the gradient of f, i.e. the vector of partial derivatives.

=~/ Andrea Asperti 5

The function computed by the net

logistic units at layer £ compute the function
at = o(b" + wh- x
e a’is the activation vector at layer £

o z{ = bt + wl. xlis the weighted input at layer ¢

o xItl =2t x! =x

The function computed by the neural net is
o(bt +wh- .. o(b?+ w?-o(b' + w!-x1)))

The dimensions of w! e b’ depend on the number of neurons at
layer ¢ (and ¢ —1).

All of them are parameters of the models.

Andrea Asperti 6

Overall structure (single input)

e Compute the gradient of the
error

e Backpropagate error derivatives
to activations and weighted input of
hidden layers, using the chain rule.

e derive error derivatives at layer
£ w.r.t. each parameter of the layer

o=@t
"X K
PN

Andrea Asperti

Backpropagation rules

layer 1+1

layer 1

OE
0z

(93,

OE

OE

b

OE daj
" Daj dz;

8ZJ da;

_ OE dz
ow;j -

6721' dw;;

OE dz
0z; db;

_OE

8aj

OE

_OE

_82j

o'(z)

OE

— W,
9z

0z;

=57 Andrea Asperti

An example

Consider the following network

2 1
w’ w!
2 2 11 1 1 11 0
@ @ @@
2 2
W21 W21
2 2
Wi Wi
2, N 1 1 _
a; z, S a, z, o a,=X,
5 W T W
1
b, b,

Andrea Asperti 9

Forward pass

Let E be the error.

Take a sample (x,y) and compute the vectors z’

,a’ at each layer /.

Andrea Asperti 10

Backward pass (1)

First, we compute the partial derivative of the error, w.r.t the last
activations:

VE >

b

Pl an o
(E)

\as@zz

Andrea Asperti 11

Backward pass (2)

Then, according to the chain rule, we backpropagate the derivative
through a function at a time, multiplying by the partial derivative
of the function we traversed:

di=VE p>'0°z)
|0 {0

2
W w
2 2 11 1 1 11 0
(02 @ e @ X

\ W12 w12

2 2 1 1 0

2@ @ @ @
w,, w

Andrea Asperti 12

Backward pass (2)

When an activation is shared by multiple units, we need to sum
together the contributions of the partial derivatives along all
directions:

2 w2 2wl
dl W11+d2 WZI

R R

2
w w
2 2 11 1 1 11 0
a-(0r s @ @@

2 w
W, 21
2 2

\ Wi, Wi
2 2 1 1 0

J Andrea Asperti 13

Backward pass (3)

We reached the z of the previous layer, and we repeat the same
computation through all layers:

d)=(d} W)+ d3-wh)-0'(2)
i'* |

11 1 1 Wll 0
am <7a; z, ~———a=X,

2
W, Wa
2 2
\ Wi, Wi,
ax z) ~—a, z, «~————aj=x
2 2 2 2 2772

Andrea Asperti 14

Backpropagation rules in vectorial notation

Given some error function E (e.g. euclidean distance) let us define the
error derivative at / as the following vector of partial derivatives:

OE

l—i
5_82’

We have the following equations

xloal1 layer [

(BP1) 6=V, E®d(Zh) e
(BP2) &' = (WHY)T51 6 o' (2]) AN
COTY —(%)

9E _ _I-1g/
(BP4) ow], ak 5J

node j

o

where ® is the Hadamard product (component-wise)

Andrea Asperti

The backpropagation algorithm

> input (x,y) : &% = x
» feedforward: for / =1,2,..., L compute z/ = w'a~1 4+ b’ e
al =o(2))
> output error: compute the vector 6- = V,E © o/(z%)
» backpropagation: per /=L —1,L —2,...,1 compute
5/ — ((WI)T(;I—H) @O'/(Z/)
» updating for / = 1,2,..., L update the parameters in the
foIIowing way:
R e
> bj’ =— b} + 6]

Andrea Asperti 16

Derivatives of common activation functions

activation function derivative

logistic function

1
o) = o/(x) = o (x)(1 ~ o(x))
hyperbolic tangent
tanh(x) = Z:L—:_ tank (x) = sech®(x)

rectified linear

Ju(x) x ifx>0 () 1 ifx>0
relu(x) = reld(x) =
0 otherwise 0 otherwise

=)/ Andrea Asperti 17

An instance of the backpropagation algorithm

If o is the logistic function, o’/(x) = o(x)(1 — o(x))
If E(y) = Y52, then V.E=y —a.
> input (x,y) : a% = x
> feedforward: for | =1,2,...,L compute z/ = w'al + b e
a =o(2')
» output error: Compute the vector
dt=V.E0d (2N =(y-a)o(ah) o (1-ah)
» backpropagation: for /=L —1,L—2,...,1 compute
o' =((w)TsM o) = (W) o (@) o1 -4)
» updating for / = 2,3, ..., L update the parameters:
> lek — lek + uaf(_ldf
> bj’- = bJ’- + u5}

HC
N 3\‘ Andrea Asperti 18

A neural network from scratch

In the following slides we shall use the backpropagation rules to
build a neural network (a simple autoencoder) from scratch.

This has only a didactical interest.
In practice, we have domain specific languages (pytorch,

tensorflow, keras, ...) that allows us to build complex neural
networks in a very simple way.

Andrea Asperti 19

A simple autoencoder

input

output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

AN ERD
i OIS\

Can we learn this function with this net?

Can we learn the identity function?

=/ Andrea Asperti

20

The function computed by the net

\\/,0

\\‘- 7/
ON=-0=77/8
‘c{;@;'e ‘.

{g’

The function computed by the net is:
o(x) = o(b® + W2 . g(bt + W . x))

parameters bl b> W1 w2
dimensions 3 8 8x3 3x38

The net has 59 parameters

Demo!

21

==Y Andrea Asperti

python code

def update(x,y):
#input
af0] = x
#feed forward
for i in range(0,1-1):
z[i] = np.dot(ali],w[i])+b[i]
ali+1] = np.vectorize(activate) (z[i])
#output error
d[1-2] = (y - a[l-1])*np.vectorize(actderiv) (a[1-1])
#back propagation
for i in range(1-3,-1,-1):
d[il=np.dot(w[i+1],d[i+1])*np.vectorize(actderiv) (z[i+1])
#updating
for i in range(0,1-1):
for k in range (0,dim[i+1]):
for j in range (0,dim[il):
wlil[j,k] = wlil[j,k] + mu*al[i][jI*d[i] [k]
b[i] [k] = b[i] [k] + mu*d[i] [k]

Andrea Asperti

Learned representation

input hidden values output
10000000 .88 .05 .08 10000000
01000000 .02.11 .88 (01000000
00100000 .01.96 .27 00100000
00010000 .95 .97 .71 00010000
00001000 .03 .06 .02 00001000
00000100 .22 .98 .99 00000100
00000010 .82.01 .98 00000010
00000001 .63 .94 .01 00000001

vV v.v Yy

the hidden layer

the new features provides a

\\
%\“. .

A'l~

v»
Qo‘

a new representation of data
of the input
we cannot expect it to work well for any input (shannon theory)

it may work well on available data, and “similar” inputs

Andrea Asperti

23

Next arguments

Learning issues

e Why learning can be slow
e Vanishing gradient problem
e Optimization rules

o A
¢ ;"'A;"‘; Andrea Asperti

24

Gradient descent can be slow

The gradient does not
ﬂ necessarily points to
the direction of the

local minimum

Andrea Asperti 25

Issues with backpropagation

> (BP4) ;Ee = aj o}
Wik
when activations are low, weights change (learn) slowly
> (BP2) ¢ =w"H)Ts* 0 o'(2%)
For sigmoid activations, if o(z*) ~ 0 0 o(z%) ~ 1, then
o’(z%) ~ 0: in this case we say that the neuron is
Similarly for BP1.

Summing up, a neuron learns slowly if either its input is low, or the
output has saturated, i.e., it is either close to 1 or close to 0.

Andrea Asperti 26

The vanishing gradient problem

(BP2) &' =(wtHTs"M o o'()

For the first layers in the net,
the gradient is the product

A
of many factors of the form / \
o'(Z2%) < % for small values of / \
Z' (at least initially) A \

The first layers learn much more slowly than the last layers.

On the other side, if weights are small, the first layer loose most of
the input information

Hence,last layers learn fast but on a highly deteriorate information.

Andrea Asperti 27

A bit of history

The vanishing gradient problem blocked the progress on neural
netwoks for almost 20 years (1990-2010).

It was first bypassed by network pre-training (e.g. with Boltzmann
Machines), and later by the introduction on new activation
functions, such as (RELU), making
pre-training obsolete.

Still, fine-tuning starting from good network weights (e.g. VGG) is
a viable approach for many problems ().

CREYYT Andrea Asperti 28

