
Lesson 3

Expressiveness

Andrea Asperti 1



Next arguments

What can we compute with a NN?

- the single layer case
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The perceptron

Binary threshold:
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output =

{
1 if

∑
i wixi + b ≥ 0

0 otherwise
output =

{
1 if

∑
i wixi ≥ −b

0 otherwise

Remark: the bias set the position of threshold.
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Hyperplanes

The set of points ∑
i

wixi + b = 0

defines a hyperplane in the space of the variables xi

Example:

−1

2
x1 + x2 + 1 = 0

is a line in the bidimensional
space x1

x2

0,1

2,0
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Hyperplanes

The hyperplane ∑
i

wixi + b = 0

divides the space in two parts: to one of them (above the line) the
perceptron gives value 1, to the other (below the line) value 0.

“above” and “below” can be inverted by just inverting parameters:∑
i

wixi + b ≤ 0⇐⇒
∑
i

−wixi − b ≥ 0
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Computing logical connectives: NAND

Can we implement this function (NAND) with a perceptron?

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we find two weights w1 and w2 and a bias b such that

nand(x1, x2) =

{
1 if

∑
i wixi + b′ ≥ 0

0 otherwise
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Graphical representation

Same as asking:
can we draw a straight line to separate green and red points?
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Lines, planes, hyperplanes

Yes!
x

x

1

20,0

0,1 1,1

1,0

NAND

line equation: 1.5− x1 − x2 = 0 or 3− 2x1 − 2x2 = 0
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The NAND-perpceptron

output =

{
1 if − 2x1 − 2x2 + 3 ≥ 0

0 otherwise

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we compute any logical circuit with a perceptron?

Andrea Asperti 10



The NAND-perpceptron

output =

{
1 if − 2x1 − 2x2 + 3 ≥ 0

0 otherwise

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we compute any logical circuit with a perceptron?

Andrea Asperti 11



The XOR case
Can we draw a straight line separating red and green points?
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No way!

Single layer perceptrons are not complete!
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XOR in image processing

Can we recognize these patterns with a perceptron (aka binary
threshold)?

good bad

No Each pixel should individually contribute to the classification,
that is not the case (more in the next slides)
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XOR in image processing

good bad

Let us e.g. consider the first pixel, and suppose it is black (the
white case is symmetric)

good

bad

? ?

does this improve our knowledge for the purposes of classification?
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XOR in image processing

good

bad

? ?

we can say nothing

good bad✘ ✘

we have still the same probability to have a good or a bad example.
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Example MNIST

Can we address digit recognition with linear tools? (perceptrons,
logistic regression, . . . )

Does the intensity of each pixel contribute to classify digits?
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Example MNIST

Does the intensity of each pixel contribute to classify digits?

I + weighted sum over a large number of features

I - need of preproceesing (centering, rotating, normalizing, etc)

I - different ways to write a same digit (e.g. 1,4,7,. . . )

classification results are modest: error rate 7-8 %
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Next arguments

Multi-layer perceptrons
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Question

- we know we can compute nand with a perceptron

- we know that nand is logically complete
(i.e. we can compute any connective with nands)

so:

why perceptrons are not complete?

answer:

because we need to compose them and consider
Multi-layer perceptrons
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Example: Multi-layer perceptron for XOR

Can we compute XOR by stacking perceptrons?

Multilayer perceptrons are logically complete!
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Important Points

• shallow nets are already complete

Why going for deep networks?

With deep nets, the same function may be computed with less
neural units (Cohen, et al.)

• Activation functions play an essential role, since they are the
only source of nonlinearity, and hence of the expressiveness of
NNs.
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Next arguments

Formal expressiveness in the
continuous case

approximating functions with logistic neurons
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Approximation by step functions
Single variable case: σ(wx + b)

The “step” is located at the inflection point, x = − b
w

steepness varies with w
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Sum of step functions

s = − b
w per w >> 0

We can thus form “bumps” of arbitrary height and width
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Approximations via bumps
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Espressiveness

I Every continuous function R → [0, 1] can be
approximated by neural networks

I a single hidden layer is enough (shallow net)

Why using deep nets?

fewer neurons suffice

see e.g. Cohen et al. On the Expressive Power of Deep Learning:
A Tensor Analysis
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Demo: approximating functions

[ demo ]
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