In object detection, we are returning a bounding box (the smallest possible box)
containing the object.

In some ways it is similar to segmentation, but while segmentation can be under-
stood as an image to image process and thus the loss function can be understood
easily (it is the distance between the real segmentation and the segmentation
guessed by the network), the same cannot be said about the object detection
approach.

Pros & cons of this approach

e pro: no need to strive about borders
e cons:
— multiple outputs of unknown number (the result is not of a fixed
dimension)
— difficult to train end-to-end
— no evident loss function

How can we compute a loss function for this type of approach?
Intersection over Union - Quality indicator for Bounding Boxes Typ-

ically, the quality of each individual bounding box is evaluated vs. the corre-
sponding ground truth using Intersection over Union:

ANB
IoU(A, B) = :AUB

Poor Good Excellent

Essen-
tially, we measure how good is a prediction by checking how much the 2 boxes
stack up/ how close they are.

Then, these bounding boxes be summed up for all detections, and suitably
combined with classification errors.

Deep Object Detection Approaches

There are 2 main approaches: - Region Proposals methods (R-CNN, Fast
R-CNN, Faster R-CNN). Region Proposals are usually extracted via Selective

Search algorithms, aimed to identify possible locations of interest. These algo-
rithms typically exploit the texture and structure of the image, and are object
independent. - Detectron2 is a pytorch library developed by Facebook AI Re-
search (FAIR) to support rapid implementation and evaluation of novel com-
puter vision research. - Single shots methods (Yolo, SSD, Retina-net, FPN).
We shall mostly focus on these really fast techniques. - In this kind of methods,
we are trying to do everything on a single pass, meaning that we're trying to
identify the boxes, and then to classify the content of the box. - Especially
suited for real-time applications.

YOLOQO’s architecture

)i

Yolo is a Fully Convolutional Network. The input is progressively downsampled
by a factor 2° = 32. This is done in order to increase the receptive field of our
neurons (each neuron at the end musts see a sufficiently large portion of the
image). For instance, an input image of dimension 416x416 would be reduced
to a grid of neurons of dimension 13x13, which is the feature map.

How do we train this network? Detection of an object may concern all
neurons inside the bounding box. So, who’s in charge for detection (who’s
supposed to recognize this objects, and thus should be trained)?

In YOLO, a single neuron is responsible for detection: the ==one whose grid-cell
contains the center of the bounding box==. This neuron makes a finite number
of predictions (e.g. 3). - We don’t care what all the other neurons predict, in
fact they get masked in the loss function.

Shape of each box We have 13x13 neurons in the feature map. -
Depth-wise, we have (B x (5 + C)) entries, where B represents the num-
ber of bounding boxes each cell can predict (say, 3), and C is the number
of different object categories. - Fach bounding box has 5 + C attributes,
which describe the center coordinates (2), the dimensions (2), the object-
ness score (1) and C class confidences (1 for each prediction, usually is 3).

https://ai.facebook.com/tools/detectron2/

Attributes of a bounding bax

[th ty‘t“. t,;] Po ||P1| P2 ch x B
‘ Box Co-ordinates Objectness Class Scores
Score

Anchor Boxes Trying to directly predict width and the height of the bound-
ing box leads to unstable gradients during training. Most of the modern object
detectors predict log-space affine transforms for pre-defined default bounding
bozxes called anchors. Then, these transforms are applied to the anchor boxes
to obtain the prediction. YOLO v3 has three anchors, which result in prediction
of three bounding boxes per cell. The bounding box responsible for detecting
the object is one whose anchor has the highest ToU with the ground truth bozx.

[to add: slides that he skipped..]

YOLO’s Loss function

The loss consists of two parts, the localization loss for bounding box offset
prediction and the classification loss for conditional class probabilities. Since
YOLO is a single pass method, the final loss function should compute both of
this parts in a single computation. As usual, we shall use v to denote a true
value, and ¥ to denote the corresponding predicted one.

aioc_zzlm[(x, %)+ (yi—9i) 2+ (Vwi— Wi)+

. 0 j=0
Localization loss The localization loss is: i=0j

where i ranges over cells, and j over bounding boxes. - 1fjl7j is a delta function
indicating whether the j-th bounding box of the cell i is responsible for the object
prediction. - Essentially, it is a mapping function containing 0 everywhere
except for the neuron that is supposed to do the localization. This essentially
masks the predictions of the other neurons.

Classification loss The classification loss is the sum of two compo-
nents, relative to the objectness confidence and the actual classification:

Los = Y70 22 0(187 + Anoobj(1 — 157))(Cys — Cy)?

+ 70 Eeec 177(pi(c) - pilc))?

Anoobj 1S @ configurable parameter meant to down-weigth the loss contributed
by “background” cells containing no objects. This is important because they
are a large majority.

L= Acourdﬁ.foc + chs
Final result The whole loss is:

Acoord 15 an additional parameter, balancing the contribution between L, . and
LClS' In YOLO,)\ d — 5 a.nd)‘noobj == 0.5.

COOT

Multi scale processing

Here’s an overview of image processing techniques for object detection through-

(a) Featurizad image pyramid (b) Single feature map
out history.

- The older approach to object detection from the 2010s used a featurized
image pyramid. With this approach, features are computed on each of the
image scales independently, which is slow. - Essentially, images were scaled and
rescaled multiple times in order to find the important features of the image.

o First systems for fast object detection (like YOLO v1) opted to
use only higher level features at the smallest scale (single fea-
ture map). This usually compromises detection of small objects.

42—

e R |k L

- x=

f
{c) Pyramidal feature hierarchy {d) Feature Pymmid Network

e An alternative (Single Shot Detector - SSD) is to reuse the pyramidal
feature hierarchy computed by a ConvNet as if it were a featurized image
pyramaid.

o Modern Systems (FPN, RetinaNet, YOLOv3) recombine features along a
backward pathway. This is as fast as (b) and (c¢), but more accurate.

In the figures, feature maps are indicated by blue outlines and thicker outlines
denote semantically stronger features.

Top-down
pathway
(inverse)

Prediction

Bottom-up
pathway
(forward)

Input image

Featurized Image Pyramid

- Bottom-up pathway is the normal feedforward computation. - Top-down
pathway goes in the inverse direction, adding coarse but semantically stronger
feature maps back into the previous pyramid levels of a larger size via lateral
connections. - First, the higher-level features are spatially upsampled. -
The feature map coming from the Bottom-up pathway undergoes channels
reduction via a 1x1 conv layer. - Finally, these two feature maps are merged
(by element-wise addition, or concatenation).

Non Maximum Suppression

This is final phase of the YOLO algorithm. Essentially, we have to consider that
we have a huge amount of predictions, since at each feature map, each neuron
makes a prediction. YOLOv3 predicts feature maps at scales 13, 26 and 52.

Prediction Feature Maps at different Scales

13 x 13

26 % 26

32 %52

For example, if we have a situation like this:

At the end, we have ((13 x 13) 4 (26 x 26) + (52 x 52)) x 3 = 10647 bound-
ing boxes, each one of dimension 85 (4 coordinates, 1 confidence, 80 class
probabilities). How can we reduce this number to the few bounding boxes we
expect?

These operations are done algorithmically, and they consist in - Thresholding
by Object Confidence: first, we filter boxes based on their objectness score.
Generally, boxes having scores below a threshold are ignored. - Non Maximum
Suppression: NMS addresses the problem of multiple detections of the same
image, corresponding to different anchors, adjacent cells in maps.

NMS outline

« Divide the bounding boxes BB according to the predicted class ¢ (creating
a list for each class).
o Each list BB, is processed separately
e Order BB, according to the object confidence.
¢ Initialize TruePredictions to an empty list.
o while BB, is not empy:
— pop the first element p from BB,

— add p to TruePredictions
— remove from BB, all elements with an JoU with p > th
e return TruePredictions

Essentially, it ignores all overlapping BBs and keeps only the best ones.

	Deep Object Detection Approaches
	YOLO’s architecture
	YOLO’s Loss function
	Multi scale processing
	Non Maximum Suppression

