Convolutional Neural Networks

As we know, in a NN we have dense layers (in which each node is connected to
the previous layer). In CNN, there are some differences.

In a CNN, each neuron is computed as a function of only some specific neurons
of the previous layer (in particular, a neighbourhood of the previous layer).

To determine the neighbourhood of each pixel, we usually just select a kernel
of weights, which is then computed through a dot product with the rest of the
neurons.

Filters and convolutions

We have a grid of weights (a kernel or filter), which we then slide.

filter
o(1]0
1 |-4 |
mnput
ﬁ"‘"-'i- T R Tt output
9 5 1 1 3 =
216 15 8 Topm et

As we’ve said: - the activation of a neuron is not influenced from all neurons
of the previous layer, but only from a small subset of adjacent meurons: his
receptive field. - every neuron works as a convolutional filter. Weights are
shared: every meuron performs the same trasformation on different areas of
its input. - with a cascade of convolutional filters intermixed with activation
functions we get complex non-linear filters assembing local features of the image
into a global structure.

CNNs and Images

Convolutions are very useful expecially for extracting features from images. An
image is coded as a numerical matrix (array) which can be either grascale or
rghb.

Some interesting features that we can extract from images are: - Edges, angles,
... points where there is a discontinuity, i.e. a fast variation of the intensity.

We measure variations of intensitites by means of derivatives and we can com-
pute discrete approximations of derivatives convolving simple linear filters.

Computing approximations of derivatives

If we think of this variation as a surface, we may notice that probebly in that
point this repentine change can be translated in a high derivative. We can
approxiamte the derivateive by meanse of the finite central difference:

Finite central difference

flz+h) = flx—h)
2h

= f'(z) + O(h?)

We essentially are computing u.
T, — Ty

Usually, h = 1 (since we can’t take 0) pixel, and negleting the costant 1/2 we
compute with the following filter

[—10 1]

This kernel is quite interesting in image processing and allows us to approximate
a derivative of the input image (w.r.t. the difference of the intensity of the pixel)
in a specific position. This kernel can be applied both horizontally and ver-

F ’;r.

tically. j i
From the input image we extract the visible contours, using different orienta-
tions of the kernel.

In general, the kernel is a pattern of the image that we are interested in. We can
have many, complex patterns, we look for this pattern over the input. The weak

point is that the pattern is linear, and so only part of the pattern is recognixed.
It’s better to combine pattern in successive elaborations.

Code Demo

kernel = np.zeros((3,3))
kernell[:,0] = -1
kernell[:,2] = 1

img = cv2.filter2D(image, -1, kernel)
fig, ax = plt.subplots(l, figsize=(12,8))
plt.imshow(img)

The kernel that we obtain is:

array([[-1., 0., 1.],
[-1., 0., 1.1,
[-1., 0., 1.))

And the result is:
A kernel that would shift the image looks something like this:

array([[0., 0., 0.1,
(0., o0., 1.1,
0., 0., 0.)

You can find the full code for this demo here: link

https://virtuale.unibo.it/pluginfile.php/1241675/mod_resource/content/1/Convolutions.ipynb

	Convolutional Neural Networks
	Filters and convolutions
	CNNs and Images

	Computing approximations of derivatives

	Code Demo

