
PART V: Heuristic Search

Combinatorial Optimization

l Complete methods
– Guarantee to find for every finite size instance an (optimal)

solution in bounded time.
– E.g., constructive tree search in CP and branch & bound, branch

& cut in ILP, other tree search methods.
– Might need exponential computation time.

l Approximate methods
– Cannot guarantee optimality, nor termination in case of

infeasibility.
– Obtain good-quality solutions in a significantly reduced amount of

time.

Approximate Methods

1. Constructive heuristics
2. Local search
3. Metaheuristics

Constructive Heuristics

l Fastest approximation methods.
l Generate solutions from scratch by repeatedly

extending the current partial assignments until a
solution is found or stopping criteria are satisfied.

l Use problem-specific knowledge (heuristic) to
construct a solution.

l A well-know class is greedy heuristics.
– Make the locally optimal choice at each stage!

Priority Rule-Based Scheduling

l Schedule next the activity i with the minimum ESTi, breaking
ties with the minimum LETi.

l May not give the optimal solution.
– A PRB solution.

– An optimal solution.

Travelling Salesman Problem (TSP)

l Given a list of connected cities and the
distances between each pair of cities,
what is the shortest possible route that
visits each city exactly once and returns
to the origin city?

l When cities are seen as vertices V and
the connections with distances as
weighted edges E in a graph G = (V,E):
– TSP is the minimum cost (i.e., total

distance) Hamiltonian tour in G.

A Greedy Heuristic for TSP

l Visit next the unvisited city
nearest to the current city.

l Nearest neighbour from A
– A-D-B-C-A
– Distance: 1+1+7+3 = 12

l Not necessarily optimal!
– A-C-D-B-A
– Distance: 3+2+1+4=10

Constructive Heuristics

l Simple, quick and often give good
approximations.

l Solutions maybe far from optimal!
– Commit to certain choices too early.

l Widely used together with other methods.
– E.g., for initialization for local search and

metaheuristics.

Local Search

l Often returns solutions of superior quality when
compared to constructive heuristics.

l Starts from some initial solution and iteratively tries
to replace the current solution with a better one in an
appropriately defined neighbourhood by applying
small (local) modifications.

l Can also start from an unfeasible assignment of all
the variables.

Search Space in Constructive Tree Search

Search Space in Local Search

Combinatorial Optimization

l Given <X,D,C,f>, find a feasible solution s*
∈ S such that f(s*) ≤ f(s) for all s ∈ S.

Neighbourhood Structure

l A function N : S → 2S that assigns to every
s ∈ S a set of neighbours N(s) ⊆ S. N(s)
is called the neighbourhood of s.

l Often implicitly defined by specifying the
modifications that must be applied to s in
order to generate its neighbours N(s).

l The application of such an operator to s
that produces a neighbour is commonly
called a move.

Local Minimum

l A locally minimal solution (or local minimum)
with respect to a neighbourhood structure N
is a solution s’ such that f(s’) ≤ f(s) for all s ∈
N(s’).

A Simple Local Search Algorithm

l Initial solution can be generated randomly or heuristically.
l A move is only performed if the resulting solution is better than the

current solution (also called hill climbing).
l ChooseImrovingNeighbor: first improvement, best improvement.
l Stops as soon as it reaches a local minimum.

– Performance highly depends on the neighbourhood structure.

Iterative Improvement

solution s

neighborhood of s

Iterative Improvement

in the neighborhoodbest

solution s

Iterative Improvement

in the neighborhoodbest

solution s next solution s’

Iterative Improvement for TSP

l Initial solution
– Any Hamiltonian tour.
– Can be generated easily, e.g., by using the

nearest neighbour constructive heuristic.
l Neighbourhood structure?

Iterative Improvement for TSP

l Initial solution
– Any Hamiltonian tour.
– Can be generated easily, e.g., by using the

nearest neighbour constructive heuristic.
l Neighbourhood structure

– Arc exchanges.

K-exchange Neighbourhood

2-exchange

l For a pair of edges, only one alternative.

3-exchange

l For a triple of edges, 23-1 alternatives.

An Iterative Improvement Algorithm
for TSP

1. Build an initial tour using the nearest
neighbourhood heuristic.

2. Select randomly an edge from that tour.
3. Make a 2-e move with all the other edges of the

tour and select the best tour therefore generated.
4. If it is better than the current tour then make it the

current tour and go to 2.
5. Else, STOP. The local minimum is reached.

à Different neighbourhood structures result in different
algorithms.

A Pictorial View of Iterative Improvement

s*

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

s

Initial solution

Local minimum

Search process
describes a

trajectory in the
search space.

Metaheuristics

l High level strategies to increase performance.
– Use of a priori knowledge (heuristics).
– Exploitation of search history – adaptation.
– General strategies to balance intensification and

diversification.
– Randomness and probabilistic choices.

l Aim: not to get trapped in local minima and
search for better and better local minima.

Intensification & Diversification

l Driving forces of metaheuristic search.
l Intensification: exploitation of the

accumulated search experience (e.g., by
concentrating the search in a confined, small
search space area).

l Diversification: exploration “in the large” of
the search space.

Intensification & Diversification

l Contrary and complementary:
– need to quickly identify regions in the search

space with high quality solutions, without wasting
too much time in the regions already explored or
not containing high quality solutions;

– their dynamical balance determines the
effectiveness of the metaheuristics.

Metaheuristics

l Encompass and combine:
– constructive methods (e.g. random, heuristic,

adaptive, etc);
– local search-based (trajectory) methods;
– population-based methods.

LS-based Methods

l Similarly to LS:
– A single solution is used at each algorithm iteration.
– Search process describes a trajectory in the search space.

s*

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

s

Initial solution

Local minimum

LS-based Methods

l Differently from LS:
- Add a diversification component to iterative

improvement for escaping from local minima.
l Allow worsening moves.
l Change neighbourhood structure during search.
l Change the objective function during search.

– Termination criteria: maximum CPU time,
maximum number of iterations (without
improvement), a solution of sufficient quality, etc.

Some LS-based Methods

l Simulated Annealing (SA)
l Variable Neighbourhood Search (VNS)
l Tabu Search (TS)
l Guided Local Search (GLS)
l Iterated Local Search (ILS)
l Greedy Randomized Adaptive Search Procedure

(GRASP).

Simulated Annealing

l Accept worsening (up-hill) moves, i.e., the search
moves toward a solution with a worse objective
function value.

l Intuition: climb the hill and go downward in another
direction in the same search landscape.

l The probability of doing such a move is decreased
during search, favouring intensification to
diversification.

A Pictorial View of SA

s*

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

s

Initial solution

Local minimum

A Pictorial View of SA

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of SA

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of SA

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of SA

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

Variable Neighbourhood Search

l Change neighbourhood structure during search.
l Intuition: different neighbourhoods generate different

search landscapes.
l A neighbourhood Ni is substituted by a

neighbourhood Nj as soon as local minima is
reached.

Variable Neighbourhood Search

Tabu Search

l Change neighbourhood structure during search by
exploiting the search history.

l Tabu list: keeps track of recently visited
solutions/moves and forbids them.

A Pictorial View of TS

solution s

neighborhood of s

A Pictorial View of TS

neighborhood of sALLOWED

solution s

A Pictorial View of TS

neighborhood of sALLOWED

solution s new solution s´

Tabu Search

l Storing solutions is often inefficient:
– better store the moves;
– but that could eliminate good yet not visited solutions.

l Aspiration criteria: accept a forbidden move towards a
solution better than the current one.

l Tabu list size determines the size of exploration,
favouring diversification to intensification as the size
increases.
– Dynamic tabu size is of interest!
– Increase in case of repetitions (thus diversification is needed).
– Decrease in case of no improvements (thus intensification

should be boosted).

Guided Local Search

l Change the objective function during search so as to
“fill in” local minima.

l Intuition: modify the search landscape with the aim
of making the current local optimum less desirable.

l Penalize solution features that occur frequently in
visited solutions.
– E.g., certain arcs in a tour in TSP.

l New objective function takes into account these
penalties.

A Pictorial View of GLS

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of GLS

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of GLS

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of GLS

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

A Pictorial View of GLS

Solution space

ob
je

ct
iv

e
fu

nc
tio

n

Metaheuristics

l Encompass and combine:
– constructive methods (e.g. random, heuristic,

adaptive, etc);
– trajectory (local search-based) methods;
– population-based methods.

Population-based Methods

l At each algorithm iteration, a set – population – of
solutions are used.

l Search process is the evolution of a set of points or a
probability distribution in the search space.

l Majority are inspired by natural processes, such as
natural evolution and social insects foraging behaviour.

l Basic principle: learn correlations between good
solution components.

Basic Principle

l Candidate solutions are
generated using a parametrized
probabilistic model.

l The model is updated using the
previously seen solutions in such
a way that the search will
concentrate in the regions
containing high quality solutions.

l E.g., Evolutionary Computation
(EC), Ant Colony Optimization
(ACO).

Ant Colony Optimization

l Inspired by the foraging behaviour of ants which
enables them to find the shortest path between the
nest and a food source.

l See the video.
– While walking ants deposit a substance called pheromone

on the ground.
– When they decide about a direction to go, they choose with

higher probability paths that are marked by stronger
pheromone concentrations.

– This behaviour is the basis for a cooperative interaction
which leads to the emergence of shortest paths.

https://www.youtube.com/watch?v=xGlzOSt9Pjk

Ant Foraging Behaviour

1 2

3 4

Ant Colony Optimization

l Pheromone trails are simulated by a parametrized
probabilistic model – pheromone model.
– Consists of a set of parameters whose values are called

pheromone values.
– Pheromone values act as the memory to keep track of the

search process so as to intensify search around the best
solution components.

– E.g., a pheromone value τ(Xi,vi) for all Xi ∈ X and vi ∈ D(Xi) can
represent the desirability of assigning vi to Xi.

– Bounding pheromone values between τmin and τmax can balance
intensification and diversification.

– Initially pheromone values are all set to τmax.

Ant Colony Optimization

l Artificial ants employ constructive heuristics for
probabilistically constructing solutions using the
pheromone values.
– Iteratively choose a variable Xi according to the heuristic and a

value vi ∈ D(Xi) according to the probability:

– Parameters α and β help to balance the influence of pheromone
and heuristic factors.

Heuristic
factor

Ant Colony Optimization

l Pheromone values are updated.
– All pheromone values are decreased by an evaporation factor.

à Allows ants to progressively forget older solutions and to
emphasize to more recent ones (diversification).

– Pheromone values associated to the assignments taking part
of good solutions are increased proportionally to the quality of
the solutions.

à The goal is to increase the probability of selecting such
assignments in the future constructions (intensification).

ACO Algorithm

1. Initialize pheromone values.
2. Ants construct solutions using

heuristics and a pheromone
model.

3. The constructed solutions are
used to update the pheromone
values in a way to bias the future
sampling towards high quality
solutions.

Termination criteria: maximum CPU time, maximum number of iterations
(without improvement), a solution of sufficient quality, etc.

LS or Population-based Metaheuristics?

l LS-based methods are preferable when:
– neighbourhood structures create a correlated

search graph;
– inventing moves is easy;
– computational cost of moves is low.

LS or Population-based Metaheuristics?

l Population-based methods are preferable
when:
– solutions can be encoded as composition of good

building blocks;
– computational cost of moves in LS is high;
– it is difficult to design effective neighbourhood

structures;
– coarse grained exploration (e.g., huge search

spaces) is preferable.

Complementary Strengths

l LS-based methods
– A promising area in the search space is searched in a more

structured way.
– Danger of being close to good solutions but “missing” them is

low.
– Intensification ability!

l Population-based methods
– New solutions are obtained by recombining earlier solutions.
– Search process performs a guided sampling of the search

space, usually resulting in a coarse grained exploration.
– Diversification ability!

Hybrid Metaheuristics

l Goal: Exploit complementary strengths of the
individual strategies (synergy).

l The use of LS-based methods inside
population-based methods.
– E.g., application of local search to solutions

constructed by ACO.
l Population-based iterated local search.
l Multilevel techniques.

Combinatorial Optimization

l Complete methods
– Guarantee to find for every finite size instance an (optimal)

solution in bounded time.
– Might need exponential computation time.
– E.g., constructive tree search in CP and branch & bound, branch

& cut in ILP, other tree search methods.
l Approximate methods

– Cannot guarantee optimality, nor termination in case of
infeasibility.

– Obtain good-quality solutions in a significantly reduced amount of
time.

Complementary Strengths

l CP (a complete method)
– Focus on constraints and feasibility.
– Easy modelling and control of search.
– Poor in optimization with loose bounds on the

objective function.
l Metaheuristics (an approximation method)

– Effective in finding good-quality solutions quickly.
– Constraints are handled inefficiently, i.e. often by

penalizing infeasible assignments in the objective
function.

Metaheuristics + Complete Methods

l Main approaches
– Metaheuristics are applied before complete methods

providing a valuable input, or vice versa.
– A complete method method applies a metaheuristic in

order to improve a solution.
– Metaheuristics use a complete method to efficiently

explore the neighbourhood.
– Metaheuristic concepts can also be used to obtain

incomplete but efficient tree exploration strategies.

Metaheuristics + Complete Methods

l Main approaches
– Metaheuristics are applied before complete methods

providing a valuable input, or vice versa.
– A complete method method applies a metaheuristic in

order to improve a solution.
– Metaheuristics use a complete method to efficiently

explore the neighbourhood.
l Large Neighbourhood Search
l ACO + CP

– Metaheuristic concepts can also be used to obtain
incomplete but efficient tree exploration strategies.

Key Issues in LS-based methods

l Defining an appropriate neighbourhood
structure.

l Choosing a way to examine the
neighbourhood of a solution.

Small vs Large Neighbourhoods

l Small neighbourhoods
– PRO: it is fast to find an improving neighbour (if

any).
– CONS: the average quality of the local minima is

low.
l Large neighbourhoods

– PRO: the average quality of the local minima is
high.

– CONS: finding an improving neighbour might be
difficult.

Large Neighbourhood Search

l Use a generic and large neighbourhood, and
explore it with a complete method like CP!

l Core idea:
– view the exploration of a neighbourhood as the

solution of a sub-problem;
– use tree search to exhaustively but quickly

explore it.

Neighbourhood in LNS

l Given a solution s:
– fix part of the variables to the values they have in s

(called fragment);
– relax the remaining variables.

s à

N(s) à

Advantages over LS and CP

l Efficient neighbourhood exploration.
– Thanks to propagation and advanced search techniques

of CP.
l LNS is easier to develop than LS.

– Easy and problem-independent neighbourhood definition.
– No need to ensure that complicated constraints are

satisfied.
l More scalable than using only CP on the problem.

– Subproblems are typically much smaller.
– We can control the subproblem size.
– The fixed-variables reduce the domain sizes.
– Propagation works best when domains are small.

Design Decisions

l Complete vs incomplete neighbourhood exploration.
– Often incomplete.

l How many variables to fix?
– The neighbourhood size should be large enough to diversify the

search, but the complexity of solving it should be rather low.
– Often hand-tuned for custom applications.
– Automatic/adaptive techniques.

l Which variables to fix?
– Random (ensures diversification).
– Problem specific approaches.
– Automatic/adaptive techniques.

ACO + CP

l Constructive techniques with complementary
strengths:
– ACO is characterized by a learning capability;
– CP is efficient in handling constraints.

l Typical ACO + CP approaches:
– Use CP as solution construction for artificial ants.
– Use ACO for variable and value ordering

heuristics in CP.

CP in ACO

l Artificial ants employ constructive heuristics for
probabilistically constructing solutions using the
pheromone values.
– Iteratively choose a variable Xi according to the heuristic and a

value vi ∈ D(Xi) according to the probability:

l Pheromone values are updated as usual.

Heuristic
factor

CP

ACO+CP followed by CP

l ACO+CP is performed and the final
pheromone matrix is saved.

l The resulting solution provides an upper
bound to CP.

l CP performs a complete search and uses the
pheromone matrix as a heuristic information
for value selection.

