PART IV: Constraint-Based Scheduling

Scheduling

- Ordering resource-requiring tasks over time.
- A very important (and tough) problem class.
- Many practical applications.

Some Scheduling Problems

- Project planning and scheduling.
 - Software project planning.
- Machine scheduling.
 - Allocation of jobs to computational resources.
- Scheduling of flexible assembly systems.
 - Car production.
- Employee scheduling.
 - Nurse rostering.

- Transport scheduling.
 - Gate assignment for flights.
- Sports scheduling.
 - Schedule for NHL, world cup, olympics.
- Educational timetabling.
 - Timetables at schools.

Resource Constrained Project Scheduling Problem (RCPSP)

- Given:
 - a set of resources with fixed capacities,
 - a set of tasks with given durations and resource requirements,
 - a set of temporal constraints between tasks,
 - and a performance metric,

RCPSP consists of deciding:

 when to execute each task so as to optimize the performance metric, subject to temporal and resource constraints.

A Constraint-Based Model

- Tasks \rightarrow (activity) variables.
- Resource constraints \rightarrow
 - unary/disjunctive/sequential resource;
 - cumulative/parallel resource.
- Temporal constraints.
- Performance metric → schedule dependent cost function.

(Activity) Variables

- Correspond to the operations to be performed. E.g.,
 - processing an order,
 - executing a job,
 - working in a shift,
 - performing a loading operation.
- Need to decide the operation positions in the timeline of the schedule.

• Main variables of the scheduling problem.

(Activity) Variables

- Activity a_i
 - Start Time S_i
 - Starting time variable of an activity a_i , with domain $D(S_i)$
 - min(S_i) is the earliest start time (release date), also referred to as EST_i.
 - max(S_i) is the latest start time, also referred to as LST_i.
 - Duration d_i
 - usually assumed to be known.
 - End Time E_i
 - Ending time variable of an activity $a_{i,}$ with domain $D(E_i)$
 - max(E_i) is the latest end time (deadline), also referred to as LET_{i.}
 - min(E_i) is the earliest end time, also referred to as EET_{i.}

(Activity) Variables

- Preemptive activity a_i
 - Can be interrupted at any time.
 - $-S_i + d_i \leq E_i$
- Non-preemptive activity a_i
 - Cannot be interrupted at any time.
 - $-S_i + d_i = E_i$
- We focus on non-preemptive activities.

Non-Preemptive Activity

Earliest Start Time: $EST_i = \underline{s}_i$

Earliest End Time: $EET_i = \underline{s}_i + d_i$

Non-Preemptive Activity

Latest Start Time: $LST_i = \overline{s}_i$

Latest End Time: $LET_i = \overline{s}_i + d_i$

Resources

- A resource corresponds to an asset available to execute the operations. E.g.,
 - the capacity of a machine,
 - the volume of a truck,
 - the number of seats in a classroom,
 - number of available workers.

Cumulative/Parallel Resource

• Can execute multiple activities in parallel.

- Activities can overlap in time!
- E.g., a group of identically skilled workers, a delivery truck, a multi-core CPU.

Cumulative/Parallel Resource

- A resource r_k is associated to a capacity c_{k.}
- Each a_i requires some amount rq_{ik} ≥ 0 of each resource r_k during its execution.
- During the execution of the schedule, the total usage of r_k by the activities a_i should not exceed c_k.

Cumulative/Parallel Resource

 Any two activity requiring the same resource is related by a cumulative constraint.

- for all $\mathbf{r}_k \in \mathbf{R}$ with the capacity \mathbf{c}_k : cumulative([S₁, S₂, ..., S_n], [d₁, d₂, ..., d_n], [rq_{1k}, rq_{2k}, ..., rq_{nk}], c_k) iff $\sum_{i|S_i \leq u < S_i + d_i} rq_{ik} \leq c_k$ for all u in D

RCPSP resources are cumulative.

Another Cumulative Example

• You are moving house. You have 4 people to do the move and you must move in 1 hour. Piano must be moved before bed.

Item	Time	No. of people
piano	30 min	3
chair	10 min	1
bed	20 min	2
table	15 min	2

Unary/Disjunctive/Sequential Resource

- Can execute one activity at a time.
 - Activities cannot overlap in time independently of the resource capacity!
 - E.g., a classroom, a train track segment, a crane on a construction site.
- Any two activity is related by a disjunctive (noOverlap) constraint.
 - $\begin{array}{ll} & \mbox{disjunctive}([S_1, S_2, ..., S_n], [d_1, d_2, ..., d_n]) \mbox{ iff} \\ & S_i + d_i \leq S_j \ \lor \ S_j + d_j \leq S_i \ \ \mbox{for all } 1 \leq i < j \leq n \end{array}$

A Disjunctive Example

- Job shop scheduling problem
 - A job is a sequence of activities (e.g., manufacture of an automobile).
 - Only disjunctive resources (machines).
 - Activities in a job require distinct machines.
 - There are as many activities as machines.

• Precedence constraints

 Forces one activity to end before another starts.

- House moving
 - Piano must be moved before bed
- RCPSP
 - Activities and precedence constraints form DAG, called Project Graph.
- Job shop scheduling problem
 - Tasks of a job are processed in a sequential order.

Time-legs & Time windows

 Bounds the difference between the end time and the start time of two activities.

$$-a_i \stackrel{\text{\tiny [1]}}{\longrightarrow} a_j$$

• $I_{ij} \leq S_j - E_i \leq u_{ij}$

- Time windows are time legs from a dummy activity a_0 with $S_0 = 0$ and $d_0 = 0$.

• $I_j \leq S_j \leq u_j$

- Sequence-dependent set up times
 - Defined for unary resources.
 - If a_i and a_j are scheduled in a sequence, then they must obey a separation constraint.

• $E_i \leq S_j \rightarrow E_i + d_{ij} \leq S_j$

Cost Function

- A common cost function: makespan
 - Completion time of the last activity.
 - Optimum makespan is the minimum makespan.
 - RCPSP and job shop scheduling cost functions are makespan.
- Minimum makespan can be modeled in different ways.
 - minimize max($[S_1+d_1,...,S_n+d_n]$)
 - Alternatively:
 - Introduce a dummy activity a_{n+1} , with $d_{n+1} = 0$ and constrain it to have the lowest precedence in the schedule:
 - $a_i \rightarrow a_{n+1}$ for all i
 - minimize S_{n+1}

Other Cost Functions

• (Weighted) Tardiness costs:

$$\sum_{a_i \in A} w_i \cdot \max(0, E_i - LET_i)$$

• (Weighted) Earliness costs:

$$\sum_{a_i \in A} w_i \cdot \max(0, LET_i - E_i)$$

- The peak resource utilization.
- The sum of set up times and costs.

A Sample RCPSP

- A Project Graph $\langle A, E \rangle$
- A is the set of activities a_i
- E is a set of activity pairs (a_i, a_j), representing the precedence constraints
- Activity durations d_i
- Set R of resources r_k , with capacity c_k
- All resource requirements r_{ik}

duration req for r_0 ($c_0 = 2$)

A Sample RCPSP

A Sample RCPSP

 The source and sink activities are fake and can be disregarded.

• Makespan optimal schedule:

Search Heuristics

- Typical instances have large domains.
 - S_i and E_i domains are as large as the horizon.
- Which variable to pick next?
- Which value to assign?

- The objective is to minimize the makespan.
- Increasing an S_i value (with other S_j untouched) cannot improve the makespan.

 \rightarrow Select EST_i.

- This is true not only for the RCPSP.
 - Many scheduling problems have so-called regular cost metrics.
 - Regular = increasing a single S_i cannot improve the cost.

• Example

• Assume we have the following domains after propagating the precedence constraints:

• Notation: [EST_i..LST_i]/[EET_i..LET_i]

• Which variable first?

A sensible criterion: minimum EST_i.

• How to break ties?

- How to break ties?
 - Tightest deadline, i.e. minimum LET_i.

Priority Rule-Based Scheduling

- A simple greedy solution approach.
- Works well in many cases.

Priority Rule-Based Scheduling

- May not give the optimal solution.
- A PRB solution.

• An optimal solution.

• Need to go back to the root node after posting S_{n+1} <10.

Need to go back to the root node after posting S_{n+1}<10.
S₁ ≠ 0?

- $S_1 \neq 0$
 - It is weak, since S_i domains tend to be very large.
- Alternative: mark activity i as postponed.
 - A postponed activity cannot be selected for branching until its EST_i changes.
- **Rationale**: we want to explore a different branching decision.
 - We always schedule activities at their EST_i.
 - The scheduling decision changes when EST_i changes.

• By proceeding along this branch, we will find the optimal solution.

SetTimes Search Strategy

• Main idea

- On the first branch schedule an activity a_i with minimum EST_i, schedule it at its EST_i.
 - Break ties according to any rule.
- On backtracking, postpone a_i.
 - When propagation updates EST_i, schedule a_i.

SetTimes Search Strategy

- A very effective search strategy.
 - Based on PRB scheduling: finds good solutions early.
 - Effective branching choices (much better than posting S_i ≠ v).
- Incomplete search strategy
 - At choice points, we do not partition the search space.
 - Either we schedule an activity i at EST_i or we make it wait.

SetTimes Search Strategy

• Why does it work?

- The cost function is regular.
- There is no point in not scheduling activities at their EST_i unless they are delayed by previous activities.
- When doesn't it work?
 - Non-regular cost functions.
 - E.g., costs for starting activities too early.
 - Side constraints that alter the problem structure.
 - E.g., maximal time legs.
- Other strategies are becoming more popular. E.g., domain splitting.