PART IV: Constraint-Based Scheduling

Scheduling

- Ordering resource-requiring tasks over time.
- A very important (and tough) problem class.
- Many practical applications.

Some Scheduling Problems

- Project planning and scheduling.
	- Software project planning.
- Machine scheduling.
	- Allocation of jobs to computational resources.
- Scheduling of flexible assembly systems.
	- Car production.
- Employee scheduling.
	- Nurse rostering.
- Transport scheduling.
	- Gate assignment for flights.
- Sports scheduling.
	- Schedule for NHL, world cup, olympics.
- \bullet Educational timetabling.
	- Timetables at schools.

Resource Constrained Project Scheduling Problem (RCPSP)

- **Given:**
	- a set of resources with fixed capacities,
	- a set of tasks with given durations and resource requirements,
	- a set of temporal constraints between tasks,
	- and a performance metric,
		- RCPSP consists of deciding:
	- when to execute each task so as to optimize the performance metric, subject to temporal and resource constraints.

A Constraint-Based Model

- Tasks \rightarrow (activity) variables.
- Resource constraints \rightarrow
	- unary/disjunctive/sequential resource;
	- cumulative/parallel resource.
- Temporal constraints.
- Performance metric \rightarrow schedule dependent cost function.

(Activity) Variables

- Correspond to the operations to be performed. E.g.,
	- processing an order,
	- executing a job,
	- working in a shift,
	- performing a loading operation.
- Need to decide the operation positions in the timeline of the schedule.

Main variables of the scheduling problem.

(Activity) Variables

- Activity a_i
	- $-$ Start Time S_i
		- Starting time variable of an activity a_i , with domain $D(S_i)$
			- $-$ min(S_i) is the earliest start time (release date), also referred to as EST_i
			- $\,$ max(S $_{\rm i}$) is the latest start time, also referred to as $\rm LST_{i.}$
	- $-$ Duration d_i
		- usually assumed to be known.
	- $-$ End Time E_i
		- Ending time variable of an activity $a_{i,j}$ with domain $D(E_i)$
			- $\,$ max(E $_{\rm i}$) is the latest end time (deadline), also referred to as LET_i
			- $\mathsf{min}(\mathsf{E}_{\mathsf{i}})$ is the earliest end time, also referred to as $\mathsf{EET}_{\mathsf{i}\mathsf{.}}$

(Activity) Variables

- \bullet Preemptive activity a_i
	- Can be interrupted at any time.
	- $S_i + d_i \leq E_i$
- Non-preemptive activity a_i
	- Cannot be interrupted at any time.
	- $S_i + d_i = E_i$
- We focus on non-preemptive activities.

Non-Preemptive Activity

Earliest Start Time: $EST_i = s_i$

Earliest End Time: $EET_i = s_i + d_i$

Non-Preemptive Activity

Latest Start Time: $LST_i = \overline{s}_i$

Latest End Time: $LET_i = \overline{s}_i + d_i$

Resources

- A resource corresponds to an asset available to execute the operations. E.g.,
	- the capacity of a machine,
	- the volume of a truck,
	- the number of seats in a classroom,
	- number of available workers.

Cumulative/Parallel Resource

• Can execute multiple activities in parallel.

- Activities can overlap in time!
- E.g., a group of identically skilled workers, a delivery truck, a multi-core CPU.

Cumulative/Parallel Resource

- A resource r_k is associated to a capacity c_k .
- Each a_i requires some amount rq_{ik} ≥ 0 of each resource r_k during its execution.
- During the execution of the schedule, the total usage of r_k by the activities a_i should not exceed c_k .

Cumulative/Parallel Resource

• Any two activity requiring the same resource is related by a cumulative constraint.

- for all $r_k \in R$ with the capacity c_k : cumulative([S₁, S₂, ..., S_n], [d₁, d₂, ..., d_n], [rq_{1k}, rq_{2k}, ..., rq_{nk}], c_k) iff $\sum_{i|S_i \le u < S_i + d_i} r q_{ik} \le c_k$ for all u in D

• RCPSP resources are cumulative.

Another Cumulative Example

• You are moving house. You have 4 people to do the move and you must move in 1 hour. Piano must be moved before bed.

Unary/Disjunctive/Sequential Resource

- Can execute one activity at a time.
	- Activities cannot overlap in time independently of the resource capacity!
	- E.g., a classroom, a train track segment, a crane on a construction site.
- Any two activity is related by a disjunctive (noOverlap) constraint.
	- $-$ disjunctive([S₁, S₂, ..., S_n], [d₁, d₂, ..., d_n]) iff S_i + $d_i \leq S_i$ \vee S_i + $d_i \leq S_i$ for all $1 \leq i \leq j \leq n$

A Disjunctive Example

- Job shop scheduling problem
	- A job is a sequence of activities (e.g., manufacture of an automobile).
	- Only disjunctive resources (machines).
	- Activities in a job require distinct machines.
	- There are as many activities as machines.

• Precedence constraints

– Forces one activity to end before another starts.

$$
\begin{array}{ccc} - & a_i \rightarrow a_j \\ \bullet & \varepsilon_i \leq S_j \end{array}
$$

- House moving
	- Piano must be moved before bed
- RCPSP
	- Activities and precedence constraints form DAG, called Project Graph.
- Job shop scheduling problem
	- Tasks of a job are processed in a sequential order.

- Time-legs & Time windows
	- Bounds the difference between the end time and the start time of two activities. [lij, uij]

$$
- a_i \stackrel{\text{[1]}}{\rightarrow} a_j
$$

 \bullet $I_{ii} \leq S_i - E_i \leq U_{ii}$

– Time windows are time legs from a dummy activity a_0 with $S_0 = 0$ and $d_0 = 0$.

 \bullet $\mid_i \leq S_i \leq u_i$

- Sequence-dependent set up times
	- Defined for unary resources.
	- If a_i and a_j are scheduled in a sequence, then they must obey a separation constraint.

 \bullet E_i \leq S_i \to E_i + d_{ii} \leq S_i

Cost Function

- A common cost function: makespan
	- Completion time of the last activity.
	- Optimum makespan is the minimum makespan.
	- RCPSP and job shop scheduling cost functions are makespan.
- Minimum makespan can be modeled in different ways.
	- minimize max $([S_1+d_1,\ldots,S_n+d_n])$
	- Alternatively:
		- Introduce a dummy activity a_{n+1} , with $d_{n+1} = 0$ and constrain it to have the lowest precedence in the schedule:
			- $-$ a_i \rightarrow a_{n+1} for all i
		- \bullet minimize S_{n+1}

Other Cost Functions

• (Weighted) Tardiness costs:

$$
\sum_{a_i \in A} w_i \cdot \max(0, E_i - LET_i)
$$

• (Weighted) Earliness costs:

$$
\sum_{a_i \in A} w_i \cdot \max(0, LET_i - E_i)
$$

- The peak resource utilization.
- The sum of set up times and costs.

A Sample RCPSP

- A Project Graph $\langle A, E \rangle$
- \bullet A is the set of activities a_i
- \bullet E is a set of activity pairs (a_i, a_j) , representing the precedence constraints
- Activity durations d_i
- Set R of resources r_k , with capacity c_k
- All resource requirements r_{ik}

duration req for r_0 ($c_0=2$)

A Sample RCPSP

A Sample RCPSP

• The source and sink activities are fake and can be disregarded.

Makespan optimal schedule:

Search Heuristics

- Typical instances have large domains.
	- S_i and E_i domains are as large as the horizon.
- Which variable to pick next?
- Which value to assign?

- The objective is to minimize the makespan.
- Increasing an S_i value (with other S_i untouched) cannot improve the makespan.

 \rightarrow Select EST_i.

- This is true not only for the RCPSP.
	- Many scheduling problems have so-called regular cost metrics.
	- Regular = increasing a single S_i cannot improve the cost.

• Example

Assume we have the following domains after propagating the precedence constraints:

• Notation: [EST_i..LST_i]/[EET_i..LET_i]

Which variable first?

 \bullet A sensible criterion: minimum EST_i.

• How to break ties?

- How to break ties?
	- Tightest deadline, i.e. minimum LET_i.

Priority Rule-Based Scheduling

- A simple greedy solution approach.
- Works well in many cases.

Priority Rule-Based Scheduling

- May not give the optimal solution.
- A PRB solution.

An optimal solution.

Need to go back to the root node after posting S_{n+1} <10.

Need to go back to the root node after posting S_{n+1} <10. $- S_1 \neq 0$?

- \bullet S₁ \neq 0
	- $-$ It is weak, since S_i domains tend to be very large.
- **Alternative:** mark activity **i** as postponed.
	- A postponed activity cannot be selected for branching until its EST_i changes.
- **Rationale**: we want to explore a different branching decision.
	- $-$ We always schedule activities at their EST_i.
	- $-$ The scheduling decision changes when EST_i changes.

By proceeding along this branch, we will find the optimal solution.

SetTimes Search Strategy

• Main idea

- On the first branch schedule an activity a_i with minimum EST_i , schedule it at its EST_i .
	- Break ties according to any rule.
- On backtracking, postpone a_i.
	- \bullet When propagation updates EST_i, schedule a_i .

SetTimes Search Strategy

- A very effective search strategy.
	- Based on PRB scheduling: finds good solutions early.
	- Effective branching choices (much better than posting $S_i \neq v$).
- Incomplete search strategy
	- At choice points, we do not partition the search space.
	- Either we schedule an activity **i** at EST_i or we make it wait.

SetTimes Search Strategy

• Why does it work?

- The cost function is regular.
- $-$ There is no point in not scheduling activities at their EST_i unless they are delayed by previous activities.
- When doesn't it work?
	- Non-regular cost functions.
		- E.g., costs for starting activities too early.
	- Side constraints that alter the problem structure.
		- \bullet E.g., maximal time legs.
- Other strategies are becoming more popular. E.g., domain splitting.