PART IV: Constraint-Based
Scheduling

Scheduling
S

e Ordering resource-requiring tasks over time.
e A very important (and tough) problem class.
e Many practical applications.

Some Scheduling Problems
S

e Project planning and e Transport scheduling.
scheduling. — Gate assignment for flights.
- Software project planning. e Sports scheduling.
e Machine scheduling. ~ Schedule for NHL, world
— Allocation of jobs to cup, olympics.
computational resources. e Educational timetabling.
e Scheduling of flexible - Timetables at schools.

assembly systems.
— Car production.
e Employee scheduling.
— Nurse rostering.

Resource Constrained Project
Scheduling Problem (RCPSP)

e Given:

a set of resources with fixed capacities,

a set of tasks with given durations and resource requirements,
a set of temporal constraints between tasks,

and a performance metric,

RCPSP consists of deciding:

when to execute each task so as to optimize the performance
metric, subject to temporal and resource constraints.

A Constraint-Based Model
«{«a 000

e Tasks - (activity) variables.

e Resource constraints -
— unary/disjunctive/sequential resource;
- cumulative/parallel resource.

e Temporal constraints.

e Performance metric - schedule dependent
cost function.

(Activity) Variables
-

e Correspond to the operations to be performed. E.g.,
— processing an order,
— executing a job,
— working in a shift,
- performing a loading operation.
e Need to decide the operation positions in the timeline of
the schedule.

| >
to
e Main variables of the scheduling problem.

(Activity) Variables
-

e Activity a, | - ‘_

— Start Time S, £
e Starting time variable of an activity a;, with domain D(S))

- min(S;) is the earliest start time (release date), also referred
to as EST;

- max(S;) is the latest start time, also referred to as LST;
— Duration d,
e usually assumed to be known.
- End Time E;
e Ending time variable of an activity a; with domain D(E;)

- max(E;) is the latest end time (deadline), also referred to as
LET;
- min(E)) is the earliest end time, also referred to as EET;

(Activity) Variables
-

e Preemptive activity a,
- Can be interrupted at any time.
- S;+d <E
e Non-preemptive activity a,
— Cannot be interrupted at any time.
- §;+d =E
e \We focus on non-preemptive activities.

Non-Preemptive Activity
S

Earliest Start Time: EST; = s,

EST;

EFET,;

Non-Preemptive Activity
S

| atest Start Time: LST; = s;

LST,

a;

- >
3; Si Si +d;

S; ; +(1j

Resources
<« 1

e A resource corresponds to an asset available to
execute the operations. E.g.,
- the capacity of a machine,
- the volume of a truck,
- the number of seats in a classroom,
- number of available workers.

Cumulative/Parallel Resource
«_oL_ 00777

e Can execute multiple activities in parallel.

— Activities can overlap in time!

- E.g., a group of identically skilled workers, a delivery
truck, a multi-core CPU.

Cumulative/Parallel Resource
«_oL_ 00777

e A resource r, is associated to a capacity ¢,

e Each a; requires some amount rg; = 0 of each
resource r, during its execution.

e During the execution of the schedule, the total usage
of r, by the activities a; should not exceed c,.

Cr™~

I'qik

Cumulative/Parallel Resource
«_oL_ 00777

e Any two activity requiring the same resource is
related by a cumulative constraint.

— for all r, € R with the capacity c,:
cumulative([S4, S,, ..., S,], [d4, da, ..., d], [F91ks A2k, ---» MArkls Ck)

iff Xis<u<s+a, T < ¢ foralluinD

e RCPSP resources are cumulative.

Another Cumulative Example
.

e You are moving house. You have 4 people to do the move and
you must move in 1 hour. Piano must be moved before bed.

Item |Time No. of
people

piano |30min |3

chair |10min |1

bed 20 min |2

table |15Smin |2

Another Cumulative Example cumusatve

resource with
capacity

e You are moving house. You have(4 people)to do the move and
you must move inPiano mustTHe moved before bed.

Item |Time No. of \

people timeline/horizon
piano |30min |3

4

chair |[10min |1
bed 20 min |2 2
table |15min |2 ° chair bed

0 15 30 45 60

activities durations resource requirements

piano table

Another Cumulative Example cumusatve

resource with
capacity

e You are moving house. You have(4 people)to do the move and
you must move inPiano mustTHe moved before bed.

[tem Time No. of \

people timeline/horizon

piano [(30min |3

: D(P) = D(C) = D(B) = D(T) = [0..60]
. P+30<60 C+10<60

bed |20min |2 B +15<60, T+ 15 < 60,

table ISmin |2 P+ 30 < B,

/ | < cumulative([P.C,8.T], [30,10,20,18], [3,1,2:2], 4

activities durations resource requirements

chair |10 min

Unary/Disjunctive/Sequential Resource
c- |

e Can execute one activity at a time.

— Activities cannot overlap in time independently of
the resource capacity!

- E.g., a classroom, a train track segment, a crane
on a construction site.

e Any two activity is related by a disjunctive
(noOverlap) constraint.
- disjunctive([S4, S, ..., S,], [d4, do, ..., d.]) iff

Si+di=s§ V S +d,<S; forall 1si<j<n

A Disjunctive Example
S

e Job shop scheduling problem

- Ajob is a sequence of activities (e.g., manufacture of an
automobile).

— Only disjunctive resources (machines).
— Activities in a job require distinct machines.
- There are as many activities as machines.

() —@)—(2)) = 00

‘ . requires machine 0
requires machine 1

. . requires machine 2

Temporal Constraints
S

e Precedence constraints

- Forces one activity to end
before another starts.
- 8,23
o £ <SS

Temporal Constraints

e House moving
-~ Piano must be moved before bed /.\

e RCPSP

— Activities and precedence constraints

()
form DAG, called Project Graph.
e

e Job shop scheduling problem ‘\

— Tasks of a job are processed in a
sequential order.

S

peYere

Temporal Constraints
S

e Time-legs & Time windows

- Bounds the difference between the end time and
the start time of two activities.
_ a U] a
o ;<S5 -E =y
— Time windows are time legs from a dummy
activity a, with S, = 0 and dy, = 0.

< Q. <1
® IJ_SJ_UJ

Temporal Constraints
S

e Sequence-dependent set up times

- Defined for unary resources.

- If a; and a;are scheduled in a sequence, then
they must obey a separation constraint.
[E|SSJ9E|+dUSSJ

Cost Function
«{«a 000

e A common cost function: makespan
— Completion time of the last activity.
— Optimum makespan is the minimum makespan.
- RCPSP and job shop scheduling cost functions are

makespan.
e Minimum makespan can be modeled in different ways.
- minimize max([S+d,,..., S,+d.])

— Alternatively:

e Introduce a dummy activity a,.4, with d,+1 = 0 and constrain it to
have the lowest precedence in the schedule:

— a; 2 a4+ foralli
e minimize S, .1

Other Cost Functions
«{«a 000

e (Weighted) Tardiness costs:

Y w;-max(0,E, - LET,)
a; €A

e (Weighted) Earliness costs:

Y w,-max(0,LET, - E)
a,€EA

e [he peak resource utilization.
e The sum of set up times and costs.

A Sample RCPSP

B duration

* A Project Graph (A,E>

i e g for 7o (Co = 2
= A is the set of activities a; req tor 10 (o)

» F is a set of activity pairs (aiv aj), O/

representing the precedence

constraints , 2/ @ 1/

= Activity durations d;

_ 1/
= Set I of resources 7% , with

capacity cx
= All resource requirements 71

A Sample RCPSP

B duration duration
req for 7o (co =2) |
aq requirement
! o/
5

1/ (g

ag

e
@

@ 1/ 3/
a4

A Sample RCPSP

1/

e The source and sink @ -
activities are fake and can be ’
disregarded. 1/

e Makespan optimal schedule: l/ 3/ 2/

makespan

1/

-

2

A7
A4 A3 | Ab AG
A2 AT

Search Heuristics
«{«a 000

e [ypical instances have large domains.
- S;and E; domains are as large as the horizon.

e \Which variable to pick next?
e \Which value to assign?

Value Selection for the RCPSP

e [he objective is to minimize the makespan.
e Increasing an S; value (with other S; untouched)
cannot improve the makespan.
- Select EST..
e This is true not only for the RCPSP.

Many scheduling problems have so-called regular
cost metrics.

Regular = increasing a single S; cannot improve the
cost.

Variable Selection for the RCPSP

e Example

)

)

as

4y

ar

ag

ay

OGN
A&

- &+

-G

Variable Selection for the RCPSP
«{«a 000

e Assume we have the following domains after
propagating the precedence constraints:

a1 | [0.5]/[2.7]

as | [0.71/[1..8] <;>
as | [3..10]/ [4..11] :
az |[2..71/[3..8] 1db

ag [3..8] / [6..11]
(

a7 (2..9]/ [4..11]

O~ O~@

as |[1.8]/[2..9)

e Notation: [EST,..LSTJ/[EET,..LET]]

Variable Selection for the RCPSP
«{«a 000

a; | [0.5]/[2.7]

as | [0.7]/[1..8] @
as | [3..10]/ [4..11] : '
as |[2..7]/ [3..8] @

’ A
’ .
’ .

ae [3..8] / [6..11] ¢
(

ay [2..9]/[4..11]

as |[1..8]/[2..9]

e \Which variable first?

Variable Selection for the RCPSP
«{«a 000

a; | [0.5]/[2.7]

a- | [0..7]/[1..8] @
as | [3..10]/ [4..11] : :
az [[2..7)/[3..8] @

’ A
’ .
’ .

ae [3..8] / [6..11] ¢
(

ay [2..9]/[4..11]

as |[1..8]/[2..9]

e A sensible criterion: minimum EST,.

Variable Selection for the RCPSP
«{«a 000

e How to break ties?

a, | [0.5]/[2.7]

as | 0.71/[1..8]

as | [3..101/ [4..11] :
a3 |[2..7]/[3..8] @
ag [&Bwuxn]1qi; il’ ‘d’

a7 [2..9]/[4..11]

as |[1..8]/[2..9]

Variable Selection for the RCPSP
«{«a 000

e How to break ties?
- Tightest deadline, i.e. minimum LET;.

a; | [0.5]/[2.7]

as | [0..7]1/1..8]

as | [3.10]/ [4.11] @ v
as |[2.71/13.8] @
ag [3..8] /[6..11]

ar [2..9]/[4..11]

ay |[1..8]/[2..9]

Variable Selection for the RCPSP
«{«a 000

gy | 0.0/[2.2

as | [0.71/[1..8] ' <:) qp’

as | [3..10]/[4..11] '
az |[2..7]/[3..8] @

’ A
’ .
’ \

ag 3.8]/6.11] L 'i' ‘i'
‘ @) (© (@

ay [3..9]/ [5..11]

a4 |[2..8]/3..9]

Variable Selection for the RCPSP
«{«a 000

a1 10..(

as | [0.7]/[1..8] @

as | [3..10]/[4..11] '
az |[2..7]/[3..8] @

’ A
’ .
’ \

ag 3.8 /6.1 L
(

ay [3..9] / [5..11]

ay |[2..8]/[3..9]

Variable Selection for the RCPSP

ao 0..0] 7/ [1..1] @

i as | [3..10]/ [4..11] '
a3 |[2..7] / [3..8] @

’ .
’ .
‘ .

ag [3..8] /[6..11] X
(

ay [3..9]/[5..11]

ay |[2..8]/[3..9]

Variable Selection for the RCPSP

aq 10..0]/ [2..2

a9 0..0]/(1..1 @

L “] as | [3..10]/ [4..11] ‘
az |[2.71/3..8) @

¢’ Y
’ .
’ \

ag 3.8 /6.1 ~L b 6
((@) (@

ay [3..9]/[5..11]

a4 |[2..8]/3..9]

A
e T TR

9

Variable Selection for the RCPSP

A

[3..8] / [4..9]

19

@

as | [3.10]/[4..11] ’ v
@

¢ .
¢ .
¢ \

ae 3.8 /6.1 ~L
(

ay | [4.9]/[6..11]

)

ay

Variable Selection for the RCPSP

@

as | [3..10]/ [4..11] v
@

’ .
’ .
’ \

ae 3.8]/6.11] ~L b 6
[(1) (@

ar | [4..9]/[6..11]

az

Variable Selection for the RCPSP

as

@

[4..10] / [5..11] ‘i’ (f)

’ A
’ .
’ \

ae [4..8] / [7..11]

&

ar | [4..9]/[6..11]

as

¥

Variable Selection for the RCPSP

as

@

[4..10] / [5..11] ‘ v
®

¢’ .
’ .
’ \

ae 4.8/7.11 ~L b ‘
[(@) (@

a7 | [4.9]/[6..11]

(3

(14

Variable Selection for the RCPSP

. X l(1|> (l»;g’

P 0] /1.7 : ¥
as| [4.4)/]5..5] 6 /S

. R (i: (l.

as | [2..2) / [3..3] f L .
5.8 /811 ~L 4 /S

(as > ag > a7

— (e
(a4 14..4]
a7 [5..9]/[7..11]
(‘ ...

(3 | (14 | 5

Variable Selection for the RCPSP

0.01/M 1] 'll|> fl--z,
az mar : z
as| [4.4)/[5..9] ;' !'
" - (13 (lg

5.8 /8.1 ~L % ,;>
(an } aq > a7

— ae
a4 14..4]
ar | [5.9]/[7..11]
(' ...
a9
a3 | 4| Aj
(/5] t
| 3

Variable Selection for the RCPSP

a) M'
@
as | A '
— ®
3] / |
ar | [8.9]/[10..11]
-.A ...
)
3 | g | A5 g
] ¢

Variable Selection for the RCPSP

a) ‘1_
©
as A '
— ®
3] / |
ar [8..9] /[10..11]
-.A ...
as
(az | aq | as g
a t

Variable Selection for the RCPSP

(a3

(4

a5

(g

Priority Rule-Based Scheduling
S

e A simple greedy solution approach.
e Works well in many cases.

A
0 oo o e e —— e e s e cas s s pr e e e e

a9

3 | a4 | Uj (g
(1 a7 {

Priority Rule-Based Scheduling
S

e May not give the optimal solution.
e A PRB solution.

A
C oo fr—pee e e p——————————————————————————————— e e e ee se s s e s e e .
a-
a3 | a4 | Q5 ag
] as ¢
e An optimal solution.
A
C e e - o o ——— - - . . - -
v
(4 az | as g
a2 5] {
>

Backtracking for Proving Optimality
.

e Need to go back to the root node after posting S,,,1<10.

a, | [0.5]/[2..7] a; | [0.317[2.5]

as | [0.7]/1..8) @ a2 | [0.5)/[1..6]

as | [3..10]/[4..11] ‘ : as | [3..8]/[4.9]
az |[2..7]/(3..8] @ az |[2..5]/ [3..6]
ae [3..8] /[6..11] ag [3..6) / [6..9]

a4 |[1.8]/2.9] a4 |[1.6]/[2.7]
ar | [2.9]/[4..11] ' ay [2..7)/[4..9)

Backtracking for Proving Optimality
.

e Need to go back to the root node after posting S,,,1<10.
~ S, #07?

a, | [0.5]/[2..7] a; | [0.317[2.5]

as | [0.7]/1..8) @ a2 | [0.5)/[1..6]

as | [3..10]/[4..11] ‘ : as | [3..8]/[4.9]
az |[2..7]/(3..8] @ az |[2..5]/ [3..6]
ae [3..8] /[6..11] ag [3..6) / [6..9]

a4 |[1.8]/2.9] a4 |[1.6]/[2.7]
ar | [2.9]/[4..11] ' ay [2..7)/[4..9)

Backtracking for Proving Optimality
.

e S, #0
— ltis weak, since S; domains tend to be very large.

e Alternative: mark activity i as postponed.
- A postponed activity cannot be selected for branching until its
EST, changes.
e Rationale: we want to explore a different branching
decision.
- We always schedule activities at their EST,.
- The scheduling decision changes when EST, changes.

Backtracking for Proving Optimality
.

ay | [0.3]/[2.5]

as | [0.5]/[1..6] @

as | [3..8]/[4..9] '
az |[2..5])/ [3..6) @

’ A
’ .
’ \

ag 3..6] / [6..9]

O

a4 |[1.6]/[2.7]
ar [2..7]/[4..9]

Backtracking for Proving Optimality
.

a; | [0.3]/[2.5]

a- 'j_‘:‘ ‘1“7‘ @ ‘-

L as | [3..8]/[4..9] v
az |[2..5]/[3..6] @

’ A
’ .
’ .\

ag [3..6] / [6..9]

a7 | [2.7]/[4..9]

&
Oy

as |[1..6]/[2..7]

Backtracking for Proving Optimality
.

a; | [0.3]/[2.5]

as | [0..0]/[1..1 @

L~ | as | [3..8]/[4..9] ‘
a3 |[2..5)/[3..6) @

’ A
’ L)
’ \

ag 3..6] / [6..9]

&

a4 |[1..6]/[2..7]
a7 [2..7]1/14..9]

Backtracking for Proving Optimality
.

ay | [2.3]/[4..5]

as| [0.0]/[1..1 @

L~ as | [3..8]/[4..9] '
a3 |[2..5)/[3..6] @

’ A
’ .
’ .

ag 3..6] / [6..9]

&

ay | [2..7]/[4.9]

(14

Backtracking for Proving Optimality
.

a; | [2.3]/[4.5]

ao 0..0]/(1..1 @

- as | [3..8]/[4..9] '
az |[2..5]/ [3..6] @

’ .
’ .
’ \

ag [3..6] / [6..9]

&

ay [2..7]/[4..9]

(14

Backtracking for Proving Optimality
.

a 12..2] / |4..4]

as | [0..0]/[1..1] @

| as | [5..8]/1[6..9] '
az | [4..5]/[5..6) @

ag (5.6] / [5..9]
ag|[1.1]/]2..2
ay [2..7]/[4..9]
A
R e D TR
(14

a9 a1 ¢

>

Backtracking for Proving Optimality

o)..0] /(1.1 @

L as | [5..8]/[6..9]
az |[4..5])/[5..6) @

’ AY
’ .
’ \

_— ag [5..6] / [..9] ¥

a7 [2..7]/[4..9]

(14
a9 a] t

e By proceeding along this branch, we will find the
optimal solution.

Backtracking for Proving Optimality
.

aq [2..2] / [4..4]
@] 0.0/0.1 @

L as | [5..8]/1[6..9] |
asz | [4..5]/[5..6) @

’ .
. Y
¢ .\

_— ae [5..6] / [2..9]

®"
Oy

aq|[1.1]/[2.2
ar [2.7]/][4..9]
A
C B s E e e
(14
as a] ¢
A
¢ --t------—_———————————————— ~ecsesemseeeeeseeeeeceeee— e
ay
4 gy | a5 ag
a] ¢
>

SetTimes Search Strategy
-]

e Main idea

- On the first branch schedule an activity a; with
minimum EST,, schedule it at its EST..

e Break ties according to any rule.

- On backtracking, postpone a..
e \When propagation updates EST,, schedule a..

SetTimes Search Strategy
-]

e A very effective search strategy.

- Based on PRB scheduling: finds good solutions
early.

— Effective branching choices (much better than
posting S; # v).
e |Incomplete search strategy

— At choice points, we do not partition the search
space.

- Either we schedule an activity i at EST, or we
make it wait.

SetTimes Search Strategy
-]

e \Why does it work?
- The cost function is regular.
- There is no point in not scheduling activities at their EST, unless
they are delayed by previous activities.
e \When doesn’t it work?

- Non-regular cost functions.
e E.g., costs for starting activities too early.
- Side constraints that alter the problem structure.

e E.g., maximal time legs.

e Other strategies are becoming more popular. E.g.,
domain splitting.

