
PART IV: Constraint-Based 
Scheduling



Scheduling

l Ordering resource-requiring tasks over time. 
l A very important (and tough) problem class.
l Many practical applications. 



Some Scheduling Problems

l Project planning and 
scheduling.
– Software project planning.

l Machine scheduling.
– Allocation of jobs to 

computational resources.
l Scheduling of flexible 

assembly systems.
– Car production.

l Employee scheduling.
– Nurse rostering.

l Transport scheduling.
– Gate assignment for flights.

l Sports scheduling.
– Schedule for NHL, world 

cup, olympics. 
l Educational timetabling.

– Timetables at schools.



Resource Constrained Project 
Scheduling Problem (RCPSP)

l Given:
– a set of resources with fixed capacities,
– a set of tasks with given durations and resource requirements,
– a set of temporal constraints between tasks,
– and a performance metric, 

RCPSP consists of  deciding:
– when to execute each task so as to optimize the performance 

metric, subject to temporal and resource constraints.



A Constraint-Based Model

l Tasks à (activity) variables. 
l Resource constraints à

– unary/disjunctive/sequential resource;
– cumulative/parallel resource.

l Temporal constraints.
l Performance metric à schedule dependent 

cost function.



(Activity) Variables

l Correspond to the operations to be performed. E.g.,
– processing an order,
– executing a job,
– working in a shift,
– performing a loading operation. 

l Need to decide the operation positions in the timeline of 
the schedule.

l Main variables of the scheduling problem.



(Activity) Variables

l Activity ai
– Start Time Si

l Starting time variable of an activity ai, with domain D(Si)
– min(Si) is the earliest start time (release date), also referred 

to as ESTi.

– max(Si) is the latest start time, also referred to as LSTi.

– Duration di

l usually assumed to be known. 
– End Time Ei

l Ending time variable of an activity ai, with domain D(Ei)
– max(Ei) is the latest end time (deadline), also referred to as

LETi.

– min(Ei) is the earliest end time, also referred to as EETi.



(Activity) Variables

l Preemptive activity ai
– Can be interrupted at any time.
– Si + di ≤ Ei

l Non-preemptive activity ai
– Cannot be interrupted at any time.
– Si + di = Ei

l We focus on non-preemptive activities. 



Non-Preemptive Activity



Non-Preemptive Activity



Resources 

l A resource corresponds to an asset available to 
execute the operations. E.g., 
– the capacity of a machine,
– the volume of a truck,
– the number of seats in a classroom,
– number of available workers. 



Cumulative/Parallel Resource

l Can execute multiple activities in parallel.
– Activities can overlap in time!
– E.g., a group of identically skilled workers, a delivery 

truck, a multi-core CPU. 



Cumulative/Parallel Resource

l A resource rk is associated to a capacity ck.

l Each ai requires some amount rqik ≥ 0 of each 
resource rk during its execution. 

l During the execution of the schedule, the total usage 
of rk by the activities ai should not exceed ck. 



Cumulative/Parallel Resource

l



Another Cumulative Example

l You are moving house. You have 4 people to do the move and 
you must move in 1 hour. Piano must be moved before bed. 



Another Cumulative Example

l You are moving house. You have 4 people to do the move and 
you must move in 1 hour. Piano must be moved before bed. 

activities durations resource requirements

cumulative 
resource with 
capacity

timeline/horizon



Another Cumulative Example

l You are moving house. You have 4 people to do the move and 
you must move in 1 hour. Piano must be moved before bed. 

activities durations resource requirements

cumulative 
resource with 
capacity

D(P) = D(C) = D(B) = D(T) = [0..60]
P + 30 ≤ 60, C + 10 ≤ 60, 
B + 15 ≤ 60, T+ 15 ≤ 60, 
P + 30 ≤ B,
cumulative([P,C,B,T], [30,10,20,15], [3,1,2,2], 4)

timeline/horizon



Unary/Disjunctive/Sequential Resource

l Can execute one activity at a time.
– Activities cannot overlap in time independently of 

the resource capacity!
– E.g., a classroom, a train track segment, a crane 

on a construction site.
l Any two activity is related by a disjunctive 

(noOverlap) constraint.
– disjunctive([S1, S2, ..., Sn], [d1, d2, ..., dn]) iff

Si + di ≤ Sj∨ Sj + dj ≤ Si for all 1≤ i<j ≤ n



A Disjunctive Example

l Job shop scheduling problem
– A job is a sequence of activities (e.g., manufacture of an 

automobile).
– Only disjunctive resources (machines).
– Activities in a job require distinct machines.
– There are as many activities as machines. 



Temporal Constraints

l Precedence constraints 
– Forces one activity to end     

before another starts. 
– ai à aj

l Ei ≤ Sj



Temporal Constraints

l House moving
– Piano must be moved before bed

l RCPSP
– Activities and precedence constraints 

form DAG, called Project Graph. 
l Job shop scheduling problem

– Tasks of a job are processed in a 
sequential order. 



Temporal Constraints

l Time-legs & Time windows
– Bounds the difference between the end time and 

the start time of two activities.
– ai aj

l lij ≤ Sj - Ei ≤ uij

– Time windows are time legs from a dummy 
activity a0 with S0 = 0 and d0 = 0.  
l lj ≤  Sj ≤ uj

[lij, uij] 



Temporal Constraints

l Sequence-dependent set up times
– Defined for unary resources.
– If ai and aj are scheduled in a sequence, then 

they must obey a separation constraint. 
l Ei ≤ Sj à Ei + dij ≤ Sj



Cost Function

l A common cost function: makespan
– Completion time of the last activity.
– Optimum makespan is the minimum makespan. 
– RCPSP and job shop scheduling cost functions are 

makespan.
l Minimum makespan can be modeled in different ways.

– minimize max([S1+d1,…, Sn+dn])
– Alternatively: 

l Introduce a dummy activity an+1, with dn+1 = 0 and constrain it to 
have the lowest precedence in the schedule: 
– ai à an+1  for all i

l minimize Sn+1



Other Cost Functions

l (Weighted) Tardiness costs:

l (Weighted) Earliness costs:

l The peak resource utilization.
l The sum of set up times and costs. 

wi ⋅max(0,Ei − LETi )ai∈A
∑

wi ⋅max(0,LETi −Ei )ai∈A
∑



A Sample RCPSP



A Sample RCPSP



A Sample RCPSP

l The source and sink 
activities are fake and can be 
disregarded. 

l Makespan optimal schedule:



Search Heuristics

l Typical instances have large domains.
– Si and Ei domains are as large as the horizon.  

l Which variable to pick next?
l Which value to assign?



Value Selection for the RCPSP

l The objective is to minimize the makespan. 
l Increasing an Si value (with other Sj untouched) 

cannot improve the makespan. 
à Select ESTi.

l This is true not only for the RCPSP.
– Many scheduling problems have so-called regular 

cost metrics. 
– Regular = increasing a single Si cannot improve the 

cost.  



Variable Selection for the RCPSP

l Example



Variable Selection for the RCPSP

l Assume we have the following domains after 
propagating the precedence constraints:

l Notation: [ESTi..LSTi]/[EETi..LETi]



Variable Selection for the RCPSP

l Which variable first?



Variable Selection for the RCPSP

l A sensible criterion: minimum ESTi.



Variable Selection for the RCPSP

l How to break ties?



Variable Selection for the RCPSP

l How to break ties?
– Tightest deadline, i.e. minimum LETi.



Variable Selection for the RCPSP
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Variable Selection for the RCPSP
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Variable Selection for the RCPSP



Variable Selection for the RCPSP



Variable Selection for the RCPSP



Variable Selection for the RCPSP



Variable Selection for the RCPSP



Priority Rule-Based Scheduling

l A simple greedy solution approach. 
l Works well in many cases. 



Priority Rule-Based Scheduling

l May not give the optimal solution.
l A PRB solution.

l An optimal solution. 



Backtracking for Proving Optimality

l Need to go back to the root node after posting Sn+1<10.



Backtracking for Proving Optimality

l Need to go back to the root node after posting Sn+1<10.
– S1 ≠ 0?



Backtracking for Proving Optimality

l S1 ≠ 0
– It is weak, since Si domains tend to be very large. 

l Alternative: mark activity i as postponed. 
– A postponed activity cannot be selected for branching until its 

ESTi changes.
l Rationale: we want to explore a different branching 

decision.
– We always schedule activities at their ESTi.
– The scheduling decision changes when ESTi changes.  



Backtracking for Proving Optimality



Backtracking for Proving Optimality



Backtracking for Proving Optimality



Backtracking for Proving Optimality



Backtracking for Proving Optimality



Backtracking for Proving Optimality



Backtracking for Proving Optimality

l By proceeding along this branch, we will find the 
optimal solution. 



Backtracking for Proving Optimality



SetTimes Search Strategy

l Main idea
– On the first branch schedule an activity ai with 

minimum ESTi, schedule it at its ESTi.
l Break ties according to any rule. 

– On backtracking, postpone ai.
l When propagation updates ESTi, schedule ai. 



SetTimes Search Strategy

l A very effective search strategy.
– Based on PRB scheduling: finds good solutions 

early.
– Effective branching choices (much better than 

posting Si ≠ v). 
l Incomplete search strategy

– At choice points, we do not partition the search 
space. 

– Either we schedule an activity i at ESTi or we 
make it wait. 



SetTimes Search Strategy

l Why does it work?
– The cost function is regular. 
– There is no point in not scheduling activities at their ESTi unless 

they are delayed by previous activities. 
l When doesn’t it work?

– Non-regular cost functions. 
l E.g., costs for starting activities too early. 

– Side constraints that alter the problem structure.
l E.g., maximal time legs.

l Other strategies are becoming more popular. E.g., 
domain splitting.   


