PART lll: Search



Constraint Solver
«{«a 000

e Enumerates all possible variable-value
combinations via a systematic backtracking
tree search.

- Guesses a value for each variable.

e During search, examines the constraints to
remove inconsistent values from the
domains of the future (unexplored)
variables, via propagation.

- Shrinks the domains of the future variables.



Backtracking Tree Search (BTS)
S

e Node -> variable X,

e Branch - decision on X
- E.g., enumeration with single values from D(X))

O O 0O



Backtracking Tree Search (BTS)

e \ariables are instantiated
sequentially.

e By default depth-first traversal.




BTS without Propagation

e Enumerates all possible variable-value
combinations via a systematic backtracking
tree search.

- Guesses a value for each variable.



BTS without Propagation

e \Whenever all the variables of
a constraint is instantiated, the
validity of the constraint is
checked.

e |n case of dead-end, the most
recently posted branching
decision is retracted
(chronological backtracking).

e Systematic search.

— Eventually finds a solution or /\
proves unsatisfiability.

— Complexity O(d"), exponential! ‘ ><




BTS without Propagation
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BTS interleaved with Propagation
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BTS interleaved with Propagation

Search and

Propagation

Reduction of the
search tree size

Exponential size



BTS without Propagation
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BTS + Forward Checking Propagation
-]




BTS + AC Propagation




Outline
«

e Depth-first Search (DFS)

- Branching Decisions
— Branching/Search Heuristics
- Randomization and Restarts

e Best-First Search (BFS)

— Limited Discrepancy Search (LDS)
— Depth-bounded Discrepancy Search (DDS)

e Constraint Optimization Problems



Branching Decisions

e Usually consists of posting a unary constraint on a
chosen variable X..

e Enumeration (or labelling) with single values from D(X).

— d-way branching:
e One branch is generated X;i=V, X;=V,,
by X; = v;for each v; € D(X)). X, =V,

— 2-way branching:
e 2 branches are generated X;=V X; =V
by X;=v and X,#v
for some v € D(X).



Branching Decisions

e Usually consists of posting a unary constraint on a
chosen variable X..

e Domain partitioning of D(X).

- k-way branching:
e One branch is generated by X, € §; Xi€ Sy X;€ S¢
for each partition S; of D;. X.e S,
O O -0

— 2-way branching:

e 2 branches are generated X;eS /\X;&S
by X;€ S and X; ¢ S for some S € D,.



Branching/Search Heuristics
S

e Guide the search.

- For a branching decision, need to choose a
variable X; and a (set of) value v;.

— Which variable next? Which value(s) next?

e Known also as variable and value ordering
(vvo) heuristics.

e Static vs dynamic heuristics.
e Problem specific vs generic heuristics.



Static Variable Ordering Heuristics
S

e A variable is associated with each level.

e Branches are generated in the same order all over the
tree.

e Calculated once and for all before search starts, hence
cheap to evaluate.




Some Static Generic VOHs
«{«a 000

e Lexicographic: The order of definition in case of a
sequence of variables:
- X4, Xy, o, X,
e Top down, left to right, row by row in case of a
matrix of variables:
- X1y X125 o5 Ky
Xo1, Xoo, oy Xom

Xio1r X2y -0 Xom



Dynamic Variable Ordering Heuristics
c- |

e At any node, any variable & branch can be considered.
e Decided dynamically during search, hence costly.

e Takes into account the current state of the search tree.




Search Heuristics
«{«a 000

e For feasible problems, choose variables and
values that are likely to yield a solution.
- In general, no guarantee of feasibility.

e \What if we make a mistake?
— Infeasible sub-problem!

- We need to explore the whole
sub-tree before backtracking!

- We should explore the sub-tree
as quickly as possible.




Heuristics for Infeasible Problems
«_ /'

e Fail-first (FF) principle: Try first where you are most likely
to fail.

-~ Aims at proving, as soon as possible, that the search is in a sub-
tree with no feasible solutions.

e How do we know if a CSP is feasible or not?
e Trade-off:

- choose next the variable that is most likely to cause failure;

- choose next the value that is most likely to be part of a solution
(least constrained value).

e Main focus on Variable Ordering Heuristics (VOHSs).

- To backtrack from an infeasible sub-problem, we need to explore
all the values in the domain of a variable.



Generic Dynamic VOHs based on FF
S

e Minimum domain (dom)

_ Choose next the variable with minimum domain size.
— |ldea: minimize the search tree size.



Dom Heuristic
«a  /////]

e Consider the order X;, X,, Xs.

X1€{O,],2,3},)(26{0,],2},)(36{0, ]}



Dom Heuristic
«a  /////]

e Consider the order X3, X,, X,.

X3€{01]}1X26{01 ]12}1X1€{01]1213}



Dom Heuristic
«a  /////]

e If propagation prunes a value at depth 1...



Dom Heuristic
«a  /////]

e ...the effect is much stronger with the second ordering!



Generic Dynamic VOHs based on FF
S

e Minimum domain (dom)

_ Choose next the variable with minimum domain size.
— |ldea: minimize the search tree size.

e Most constrained (deg)

_ Choose next the variable involved in most number of
constraints.

- ldea: maximize constraint propagation.



Most Constrained Variables

.




Generic Dynamic VOHs based on FF
S

e Minimum domain (dom)
— Choose next the variable with minimum domain.
— ldea: minimize the search tree size.

e Most constrained (deg)

_ Choose next the variable involved in most number
of constraints.

- ldea: maximize constraint propagation.

e Combination
- Minimize dom / deg



Map Colouring

{1,2,3,4,5,6} {1 2,3}
(1,2,3}
{5,6} ‘-—»( ? %—»é>(v/
(4.5 {1,2,3,4} {1,2,3}

e Maintain AC during search with 2-way branching using
various heuristics.



Lexicographic Ordering

{1,2,3,4,5,6} {1,2, 3}
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Lexicographic Ordering
-

{1,2,3,5,6} {1,2,3}
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Maximum Degree
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Maximum Degree
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Minimum Domain

{1,2,3,4,5,6} {1,2,3}
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Minimum Domain / Degree

{1,2,3,4,5,6} {1,2,3}
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Minimum Domain / Degree
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Minimum Domain / Degree




Minimum Domain / Degree
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Weighted Degree Heuristic
..

e Constraints are weighted.
— Initially set to 1.

e During the propagation of a constraint c, its weight w(c)
is incremented by 1 if the constraint fails.

e The weighted degree of a variable X::
wX)= Y  w(c)
cs.t. X,;€EX(c)

e Domain over weighted degree heuristic (dom\Wdeg):

— Choose the variable X; with minimum dom(X;) / w(X,).



Heavy Tail Behaviour

e Given a collection of instances of a problem, we
often observe some exceptionally hard instances
that take exceptionally longer time to solve.

- Large impact on the runtime distributions for a given set of
instances.
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Latin Squares

e Given an nxn matrix and n colours, a Latin square of order n is
a coloured matrix such that all cells are coloured, each colour
appears exactly once in each row and in each column.

e Applications in fiber optic networks, design of statistical
experiments, scheduling and timetabling.



Quasigroup Completion Problem
S

e Given a partial assignment of colours, can the partial Latin square
(quasigroup) be completed so that we obtain a Latin square?

Ul




Quasigroup Completion Problem

e 11x11 matrix with 30% pre-assignments
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Heavy Tail Behaviour
S

e Not a characteristic of the instance!

— The same behaviour is observed if we run several times the

same instance while varying some parameter (like the variable
ordering) of the solver.

- For some combination instance + solver parameters, we get
trapped into an exponential subtree.

e Intuitive reason:

- If we make a mistake early during search, we get stuck in
trashing.

e Remember the puzzle example!
— Different heuristics lead to “bad” mistakes on different instances.

e Observation: such mistakes are seemingly random.



Heavy Tail Behaviour
S

e Randomization

- Add some randomized parameter in search. E.g.,
e Pick (some) variables/values at random.
e Break ties randomly.

- Given the same random seed, the solver will explore
the same tree, however it will never explore two
iIdentical subproblems in the same way.



Heavy Tail Behaviour
S

e Restarting

- Restart the search, after certain amount of resources
are consumed.
e Usually in the form of search steps, such as the number of
visited nodes.
- In the subsequent runs, search differently.

e Introduce randomization.
e Learn from the accumulated experiences of previous runs.



Heavy Tail Behaviour
S

e Randomization + restarts eliminates the huge
variance in solver performance.

e \WVithout randomization + restarts

e \Vith randomization + restarts




Restart Strategies

e Constant restart
- Restart after using L resources.

e (Geometric restart
-~ Restart after L resources, with the new limit a*L.

-~ Ends up being L, a’L, 'L, a%'L, ...

e Luby restart
— Restart after s[i]*L resources where sJi] is the it" number in the
Luby sequence =[1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, ...],
which repeats two copies of the sequence ending in 2' before
adding the number 21*1,



domWdeg & Restarts
S

e domWdeg heuristic works well with restart.

— Collected fail counts can be carried over to
subsequent runs.

e domWdeg combined with random choice of
values can be very effective!



Problems with DFS

e For many problems, heuristics are more
accurate at deep nodes.

Often first decision is wrong.

e DFS:

puts tremendous burden on the heuristics early in
the search and light burden deep in the search;

consequently mistakes made near the root of the
tree can be costly to discover and undo.

Remember the puzzle example!



Problems with DFS
«{«a 000

e Best-first search (BFS) strategy is of interest.

e BFS explores first the nodes that are most
promising according to some heuristic
evaluation.



Outline
«

e Depth-first Search (DFS)
-~ Branching Decisions
- Branching Heuristics
- Randomization and Restarts

e Best-First Search (BFS)

- Limited Discrepancy Search (LDS)
-~ Depth-bounded Discrepancy Search (DDS)

e Constraint Optimization Problems



Limited Discrepancy Search
S

e A discrepancy is any decision in a search tree that does
not follow the heuristic (any right branch out of a node).

e LDS

— Trusts the heuristic and gives priority to the left branches.
— lteratively searches the tree by increasing number of
discrepancies.
e On the Ot iteration, explore the leftmost branches.
e On the 1sth iteration, explore all left branches except 1 branch.
e On the 2nd iteration, explore all left branches except 2 branches.
o ...



Limited Discrepancy Search
S

o LDS

— On the ith iteration, LDS visits all leaf nodes with i
discrepancies.

- Motivation: the branching heuristic has hopefully
made a few mistakes, and LDS allows a small
number of mistakes to be corrected at little cost.

- By contrast, DFS needs to explore a significant
fraction of the tree before undoing an early
mistake.



Limited Discrepancy Search

Oth iteration 1 st iteration 2nd iteration

3rd iteration 4th iteration



Problems with LDS
«{«a 000

e All discrepancies are alike, irrespective of
their depth.

e Heuristics tend to be less informed and make
more mistakes at the top of the search tree.

e |t is worth exploring discrepancies at the top
of the tree before those at the bottom.



Depth-bounded Discrepancy Search
S

e Biases search to discrepancies high in the tree
via an iteratively increasing depth bound.
- Discrepancies below this depth are prohibited.
— On the 0% iteration, DDS = LDS.

— On the it iteration, DDS explores those branches on
which discrepancies occur at a depth of i or less.

— At lesser depths, DDS explores more
discrepancies.

— At greater depths, DDS follows the heuiristic.



Depth-bounded Discrepancy Search

Oth iteration 1st iteration 2nd iteration

3rd iteration 4th iteration



Outline
«

e Depth-first Search (DFS)
- Branching Decisions
- Branching Heuristics
- Randomization and Restarts

e Best-First Search (BFS)

- Limited Discrepancy Search (LDS)
- Depth-bounded Discrepancy Search (DDS)

e Constraint Optimization Problems



Constraint Optimization Problems
(COPs)

e CSP enhanced with an optimization criterion,
e.g..
— minimum cost;
- shortest distance;
— fastest route;
— maximum profit.

e Formally, <X,D,C,f> where f is the formalization
of the optimization criterion as an objective
function/variable. Goal: minimize f (maximize —f).



Optimal Map Colouring
S

e \What is the minimum number of colours
necessary to colour the neighbouring regions
differently?



Optimal Map Colouring
S

e Variables and Domains
— X for each of n regions with domain [1..n]
e Constraints
- Xi# X;for each neighbour region i and j
e Objective function/variable
— f=max (X))
e Objective: minimize f



Solving COPs
.

e Enumeration.
- Doesn’t scale up in case of too many solutions.

e Search over D(f).
e Branch & bound.



Searching over D(f)
S

e Destructive lower bound

— lterate over the values v € D(f), starting from
min(D(f)).

- At each iteration, post the constraint f £ v and solve
the CSP.

- The first feasible solution is guaranteed to be
optimal.

- Why destructive?

e Intermediate computation results are discarded.



Destructive Lower Bound

e SO
e SO
e SO

ve wit
ve wit
ve wit

N1 co
N 2 CO

N 3 CO

our -> fall
ours -> fail
ours - success (optimal)



Searching over D(f)
S

e Destructive upper bound

— lterate over (some of) the values v € D(f), starting
from max(D(f)).

- At each iteration, post the constraint f £ v and
solve the CSP.

— For the next iteration, setv =f -1.

- When the problem is infeasible, the last solution
IS proven optimal.



Destructive Upper Bound
-

Solve with 8 colours = success with 5 colours
Solve with 4 colours = success with 4 colours
Solve with 3 colours = success with 3 colours

Solve with 2 colours - fail (optimality with 3 colours
proven)



Upper or Lower Bounds?

e Destructive lower bound
— CON: not an any time algorithm
— CON: small steps
- PRO: tighter constraints = more propagation
- PRO: provides lower bounds



Upper or Lower Bounds?

e Destructive lower bound
— CON: not an any time algorithm
— CON: small steps
- PRO: tighter constraints = more propagation
- PRO: provides lower bounds

e Destructive upper bound
- PRO: anytime algorithm
- PRO: larger steps
— CON: less propagation
— CON: no lower bounds



Binary Search
S

e Combine the advantages of both!
— Binary search over D(f).




Binary Search
S

I | |
| | >

e Main idea:

- keep both a (feasible) upper bound ub and an
(infeasible) lower bound Ib;

— solve by posting Ib < f < (Ib + ub)/2



Binary Search
S

| > —

e Main idea:

- keep both a (feasible) upper bound ub and an
(infeasible) lower bound Ib;

— solve by posting Ib < f < (Ib + ub)/2;
- if feasible, update ub



Binary Search
S

| I
I | >

e Main idea:

- keep both a (feasible) upper bound ub and an
(infeasible) lower bound Ib;

— solve by posting Ib < f < (Ib + ub)/2;
- if feasible, update ub



Binary Search
S

| X — >

e Main idea:

- keep both a (feasible) upper bound ub and an
(infeasible) lower bound Ib;

— solve by posting Ib < f < (Ib + ub)/2;
- if feasible, update ub; if infeasible, update Ib



Binary Search

e Main idea:

- keep both a (feasible) upper bound ub and an
(infeasible) lower bound Ib;

— solve by posting Ib < f < (Ib + ub)/2;
- if feasible, update ub; if infeasible, update Ib



Binary Search
S

e >

e Main idea:

- keep both a (feasible) upper bound ub and an
(infeasible) lower bound Ib;

— solve by posting Ib < f < (Ib + ub)/2;
- if feasible, update ub; if infeasible, update Ib;
— stop if a solution with f = Ib+1 is found.



Binary Search
S

e A compromise between destructive
lower and upper bounding.
— Anytime algorithm.
— Lower bounds.
— Tight(ish) constraints on f - good
propagation.
— Large steps.



Binary Search
S

e Almost all information is discarded
between each attempt.

> A lot of repeated work!
e Is there a more efficient method?




Branch & Bound Algorithm
S

e Solves a sequence of CSPs via a single search tree
and incorporates bounding in the search.

e How?

- Each time a feasible solution is found, posts a new
bounding constraint which ensures that a future solution
must be better than it.

- Backtracks and looks for a new solution with the additional
bounding constraint, using the same search tree.

- Repeats until infeasible: the last solution found is optimal.



Optimal Map Colouring with B&B

max (z;) € {1..8}

1=0..7




Optimal Map Colouring with B&B

max (z;) € {1..8}

1=0..7




Optimal Map Colouring with B&B




Optimal Map Colouring with B&B

max (z;) € {4}

1=0..7




Optimal Map Colouring with B&B

max (z;) € {4..8}

1=0..7

max (x;) < 4 {2} (1.3,5..8)

1=0..7




Optimal Map Colouring with B&B

max (x;) € {—}

1=0..7

max (x;) < 4 (2} {1..3}

1=0..7




Optimal Map Colouring with B&B

max (z;) € {4..8}

1=0..7

max (x;) < 4 {2} {1..8}

1=0..7




Optimal Map Colouring with B&B

max (x;) € {—}
i=0..7

max (x;) < 4 (2} {1..3}

t=0..7




Optimal Map Colouring with B&B

max (z;) € {3..8}

1=0..7

max (x;) < 4

1=0..7




Optimal Map Colouring with B&B

m;iix(.z.',-) € {3}
1=0..7
max (x;) < 4

1=0..7




Optimal Map Colouring with B&B

max (x;) € {3}
1=0..7
max (x;) < 4 {3} {1,3}

1=0..7




Optimal Map Colouring with B&B

max (x;) € {3}

1=0..7

max (x;) < 4 3} {1,3}

1=0..T




Optimal Map Colouring with B&B

111_&)13((1}) € {3}
1=0..7
max (xr;) < 4 {3} {1}

1=0..7




Optimal Map Colouring with B&B
.

e [he solution is optimal, but we don’t know it
yet!

e \We need to finish exploring the search tree.
- Often called optimality proof.



Conclusions on Optimization
.

e Main idea: solve a sequence of CSPs to
solve a COP.

e 2 main approaches:
— Search over D(f)

e Destructive bounding and binary search.
e Different trade-offs.

-~ Branch and bound

e PRO: No waste of information (and a bit of more
propagation).

e PRO: Anytime algorithm.

e CON: (Almost) no lower bounds.



Tree: Formal Definition

e Def: A tree is a set of nodes (vertices) connected
by edges (links) s.t. there is exactly one way to

get from any node to any other node

* Which of the following are trees?

ATNE U



Tree: Formal Definition

e Def: A tree is a set of nodes (vertices) connected
by edges (links) s.t. there is exactly one way to

get from any node to any other node

* Which of the following are trees?

A TS A

YES! No, it is No, itis
a graph a forest
(i.e. multiple trees)



Fundamental Property

* Every non-empty tree with n nodes has exactly
n-1 edges

* This property can also be used to demonstrate
that a given data structure is NOT a tree

nodes: 3,
edges: 3
O

nodes: 9,
edges: 9




Rooted Tree

« Atree is arooted tree if one of its nodes is distinguished as
root

root We usually put a root at the top.

« This definition can be used in a recursive way

— A rooted tree consists of a root node and a finite set of sub-trees,

) root
which are themselves rooted trees

— Base case when the set of sub-trees is empty

subtrees



Some Terminology

r is root

y is a parent of x and z; ris a parent of y

r,y and x are ancestors of x

r,y are proper ancestors of x

X, z are children of y X
X, Y, zand u are descendants of r
x and z are siblings

all ancestors of u form a path from u to the root (u =2 z 2 y =2r)
w, X and u are leaf nodes (others are called internal nodes)

The depth of a node is the length of the path to the root

— The depth of w, x and z is 2, of uis 3

The height of a node is the length of the longest path to a leaf
— The height of y is 2

—  What is the height of the tree?



Sub-tree & Ordered Tree

* A sub-tree is a node i plus all its descendants

- i is the root of the sub-tree r
* Inour example: y is the root of a sub-tree J
X \\I Z
W
u

« An ordered tree is a rooted tree in which the
children of each node are ordered

— Order is important!



Binary Tree

e Def: A binary tree is an ordered tree which is either empty or
consists of a root node and two sub-trees (left and right) which are
themselves binary trees

root

left right
Subtree Subtree

« Which of the following are binary trees?
T1 T2 T3 T4
* Are these binary trees the same?
— Binary trees are ordered trees! i



