
PART III: Search



Constraint Solver

l Enumerates all possible variable-value 
combinations via a systematic backtracking 
tree search.
– Guesses a value for each variable.

l During search, examines the constraints to 
remove inconsistent values from the 
domains of the future (unexplored) 
variables, via propagation.
– Shrinks the domains of the future variables. 



Backtracking Tree Search (BTS)

l Node    à variable Xi

l Branch à decision on Xi
– E.g., enumeration with single values from D(Xi) 

Xi=v1 Xi=vm

Xi

…
Xi=v2



Backtracking Tree Search (BTS)

l Variables are instantiated 
sequentially.

l By default depth-first traversal.



BTS without Propagation

l Enumerates all possible variable-value 
combinations via a systematic backtracking 
tree search.
– Guesses a value for each variable.

l During search, examines the constraints to 
remove inconsistent values from the 
domains of the future (unassigned) 
variables, via propagation.
– Shrinks the domains of the future variables.



BTS without Propagation

l Whenever all the variables of 
a constraint is instantiated, the 
validity of the constraint is 
checked.
l In case of dead-end, the most 

recently posted branching 
decision is retracted 
(chronological backtracking).

l Systematic search.
– Eventually finds a solution or 

proves unsatisfiability.
– Complexity O(dn), exponential!



BTS without Propagation

D(X1) = {1,2}  
D(X2) = D(X3) = {1,2,3}
C1: X1 ≠ X2 C2 : X2 < X3

X1=1

X2=1 X2≠1

X2

X1

X2=2

X3

X2

X3=1 X3≠1

X3

X3=2 X3≠2

X3=3

X3



BTS interleaved with Propagation

D(X1) = {1,2}  
D(X2) = D(X3) = {1,2,3}
C1: X1 ≠ X2 C2 : X2 < X3

X1=1

X2=1 X2≠1

X2

X1

X2=2

X3

X2

X3=1 X3≠1

X3

X3=2 X3≠2

X3=3

X3

Propagation
C2 : D(X2) = {1,2,3}, D(X3) ={1,2,3}

X1=1

X1

Propagation

C1 : D(X2) = {1,2}
C2 : D(X3) = {2,3}



BTS interleaved with Propagation

Search        and Propagation

Reduction of  the 
search tree size

Exponential size



BTS without Propagation



BTS + Forward Checking Propagation



BTS + AC Propagation



Outline

l Depth-first Search (DFS)
– Branching Decisions
– Branching/Search Heuristics
– Randomization and Restarts

l Best-First Search (BFS)
– Limited Discrepancy Search (LDS)
– Depth-bounded Discrepancy Search (DDS)

l Constraint Optimization Problems



Branching Decisions

l Usually consists of posting a unary constraint on a 
chosen variable Xi.  

l Enumeration (or labelling) with single values from D(Xi).
– d-way branching: 

l One branch is generated 
by Xi = vj for each vj ∈ D(Xi).

– 2-way branching:
l 2 branches are generated 

by Xi = v and   Xi ≠ v
for some v∈ D(Xi). 

Xi=v1 Xi=vm

Xi

…
Xi=v2

Xi=v Xi≠v

Xi



Branching Decisions

l Usually consists of posting a unary constraint on a 
chosen variable Xi.  

l Domain partitioning of D(Xi).
– k-way branching: 

l One branch is generated by Xi ∈ Sj
for each partition Sj of Di.

– 2-way branching:
l 2 branches are generated 

by Xi ∈ S and Xi ∉ S for some S ⊆ Di.
Xi∉ SXi∊ S

Xi

Xi

…

Xi∊ S1

Xi∊ S2

Xi∊ Sk



Branching/Search Heuristics

l Guide the search.
– For a branching decision, need to choose a 

variable Xi and a (set of) value vj. 
– Which variable next? Which value(s) next?

l Known also as variable and value ordering 
(vvo) heuristics.  

l Static vs dynamic heuristics. 
l Problem specific vs generic heuristics.



Static Variable Ordering Heuristics 

l A variable is associated with each level.
l Branches are generated in the same order all over the 

tree.
l Calculated once and for all before search starts, hence 

cheap to evaluate.



Some Static Generic VOHs

l Lexicographic: The order of definition in case of a 
sequence of variables:
– X1, X2, …, Xn

l Top down, left to  right, row by row in case of a 
matrix of variables:
– X11, X12, …, X1m

X21, X22, …, X2m

…
Xn1, Xn2, …, Xnm



Dynamic Variable Ordering Heuristics

l At any node, any variable & branch can be considered.
l Decided dynamically during search, hence costly.
l Takes into account the current state of the search tree.



Search Heuristics

l For feasible problems, choose variables and 
values that are likely to yield a solution. 
– In general, no guarantee of feasibility.  

l What if we make a mistake? 
– Infeasible sub-problem!
– We need to explore the whole                          

sub-tree before backtracking!
– We should explore the sub-tree                             

as quickly as possible.



Heuristics for Infeasible Problems

l Fail-first (FF) principle: Try first where you are most likely 
to fail.
– Aims at proving, as soon as possible, that the search is in a sub-

tree with no feasible solutions.
l How do we know if a CSP is feasible or not?
l Trade-off:

– choose next the variable that is most likely to cause failure;
– choose next the value that is most likely to be part of a solution 

(least constrained value).
l Main focus on Variable Ordering Heuristics (VOHs).

– To backtrack from an infeasible sub-problem, we need to explore 
all the values in the domain of a variable. 



Generic Dynamic VOHs based on FF

l Minimum domain (dom)
– Choose next the variable with minimum domain size.
– Idea: minimize the search tree size.



Dom Heuristic

l Consider the order X1, X2, X3.

X1 ∈ {0, 1, 2, 3}, X2 ∈ {0, 1, 2}, X3 ∈ {0, 1}



Dom Heuristic

l Consider the order X3, X2, X1.

X3 ∈ {0, 1} , X2 ∈ {0, 1, 2}, X1 ∈ {0, 1, 2, 3} 



Dom Heuristic

l If propagation prunes a value at depth 1…



Dom Heuristic

l …the effect is much stronger with the second ordering!



Generic Dynamic VOHs based on FF

l Minimum domain (dom)
– Choose next the variable with minimum domain size.
– Idea: minimize the search tree size.

l Most constrained (deg)
– Choose next the variable involved in most number of 

constraints.
– Idea: maximize constraint propagation.



Most Constrained Variables

?

?

?

?

??



Generic Dynamic VOHs based on FF

l Minimum domain (dom)
– Choose next the variable with minimum domain.
– Idea: minimize the search tree size.

l Most constrained (deg)
– Choose next the variable involved in most number 

of constraints.
– Idea: maximize constraint propagation.

l Combination
– Minimize dom / deg



Map Colouring

l Maintain AC during search with 2-way branching using 
various heuristics. 



Lexicographic Ordering



Lexicographic Ordering



Maximum Degree



Maximum Degree

/

/

/

Correction: x4



Minimum Domain



Minimum Domain



Minimum Domain / Degree 



Minimum Domain / Degree 



Minimum Domain / Degree 



Minimum Domain / Degree 



Weighted Degree Heuristic

l Constraints are weighted.
– Initially set  to 1. 

l During the propagation of a constraint c, its weight w(c)
is incremented by 1 if the constraint fails. 

l The weighted degree of a variable Xi:

l Domain over weighted degree heuristic (domWdeg):
– Choose the variable Xi with minimum dom(Xi) / w(Xi).

w(Xi ) = w(c)
c  s.t.  Xi∈X (c)
∑



Heavy Tail Behaviour

l Given a collection of instances of a problem, we 
often observe some exceptionally hard instances 
that take exceptionally longer time to solve. 
– Large impact on the runtime distributions for a given set of 

instances.



Latin Squares

l Given an nxn matrix and n colours, a Latin square of order n is 
a coloured matrix such that all cells are coloured, each colour 
appears exactly once in each row and in each column.  

l Applications in fiber optic networks, design of statistical 
experiments,  scheduling and timetabling. 



Quasigroup Completion Problem

l Given a partial assignment of colours, can the partial Latin square 
(quasigroup) be completed so that we obtain a Latin square? 



Quasigroup Completion Problem

l 11x11 matrix with 30% pre-assignments



Heavy Tail Behaviour

l Not a characteristic of the instance! 
– The same behaviour is observed if we run several times the 

same instance while varying some parameter (like the variable 
ordering) of the solver.

– For some combination instance + solver parameters, we get 
trapped into an exponential subtree.

l Intuitive reason:
– If we make a mistake early during search, we get stuck in 

trashing. 
l Remember the puzzle example! 

– Different heuristics lead to “bad” mistakes on different instances. 
l Observation: such mistakes are seemingly random. 



Heavy Tail Behaviour

l Randomization
– Add some randomized parameter in search. E.g., 

l Pick (some) variables/values at random.
l Break ties randomly.

– Given the same random seed, the solver will explore 
the same tree, however it will never explore two 
identical subproblems in the same way.



Heavy Tail Behaviour

l Restarting
– Restart the search, after certain amount of resources 

are consumed.
l Usually in the form of search steps, such as the number of 

visited nodes.
– In the subsequent runs, search differently. 

l Introduce randomization. 
l Learn from the accumulated experiences of previous runs. 



Heavy Tail Behaviour

l Randomization + restarts eliminates the huge 
variance in solver performance.

l Without randomization + restarts

l With randomization + restarts



Restart Strategies

l Constant restart 
– Restart after using L resources.

l Geometric restart
– Restart after L resources, with the new limit 𝛂*L.
– Ends up being L, 𝛂*L, 𝛂2*L, 𝛂3*L, …

l Luby restart
– Restart after s[i]*L resources where s[i] is the ith number in the 

Luby sequence = [1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, …], 
which repeats two copies of the sequence ending in 2i before 
adding the number 2i+1.



domWdeg & Restarts

l domWdeg heuristic works well with restart.
– Collected fail counts can be carried over to 

subsequent runs. 
l domWdeg combined with random choice of 

values can be very effective!



Problems with DFS

l For many problems, heuristics are more 
accurate at deep nodes.
- Often first decision is wrong.

l DFS:
- puts tremendous burden on the heuristics early in 

the search and light burden deep in the search;
- consequently mistakes made near the root of the 

tree can be costly to discover and undo.
- Remember the puzzle example!



Problems with DFS

l Best-first search (BFS) strategy is of interest.
l BFS explores first the nodes that are most 

promising according to some heuristic 
evaluation. 



Outline

l Depth-first Search (DFS)
– Branching Decisions
– Branching Heuristics
– Randomization and Restarts

l Best-First Search (BFS)
– Limited Discrepancy Search (LDS)
– Depth-bounded Discrepancy Search (DDS)

l Constraint Optimization Problems



Limited Discrepancy Search

l A discrepancy is any decision in a search tree that does 
not follow the heuristic (any right branch out of a node).

l LDS
– Trusts the heuristic and gives priority to the left branches.
– Iteratively searches the tree by increasing number of 

discrepancies. 
l On the 0th iteration, explore the leftmost branches. 
l On the 1sth iteration, explore all left branches except 1 branch.
l On the 2nd iteration, explore all left branches except 2 branches.
l …



Limited Discrepancy Search

l LDS
– On the ith iteration, LDS visits all leaf nodes with i

discrepancies. 
– Motivation: the branching heuristic has hopefully 

made a few mistakes, and LDS allows a small 
number of mistakes to be corrected at little cost.

– By contrast, DFS needs to explore a significant 
fraction of the tree before undoing an early 
mistake. 



Limited Discrepancy Search



l All discrepancies are alike, irrespective of 
their depth.

l Heuristics tend to be less informed and make 
more mistakes at the top of the search tree. 

l It is worth exploring discrepancies at the top 
of the tree before those at the bottom. 

Problems with LDS



Depth-bounded Discrepancy Search

l Biases search to discrepancies high in the tree 
via an iteratively increasing depth bound.
– Discrepancies below this depth are prohibited. 
– On the 0th iteration, DDS = LDS. 
– On the ith iteration, DDS explores those branches on 

which discrepancies occur at a depth of i or less. 
– At lesser depths, DDS explores  more 

discrepancies. 
– At greater depths, DDS follows the heuristic. 



Depth-bounded Discrepancy Search



Outline

l Depth-first Search (DFS)
– Branching Decisions
– Branching Heuristics
– Randomization and Restarts

l Best-First Search (BFS)
– Limited Discrepancy Search (LDS)
– Depth-bounded Discrepancy Search (DDS)

l Constraint Optimization Problems



Constraint Optimization Problems 
(COPs)

l CSP enhanced with an optimization criterion, 
e.g.:
– minimum cost;
– shortest distance;
– fastest route;
– maximum profit.

l Formally, <X,D,C,f> where f is the formalization 
of the optimization criterion as an objective 
function/variable. Goal: minimize f (maximize –f).



Optimal Map Colouring

l What is the minimum number of colours 
necessary to colour the neighbouring regions 
differently?



Optimal Map Colouring

l Variables and Domains
– Xi for each of n regions with domain [1..n]

l Constraints
– Xi ≠ Xj for each neighbour region i and j

l Objective function/variable
– f = max (Xi)

l Objective: minimize f



Solving COPs

l Enumeration.
– Doesn’t scale up in case of too many solutions. 

l Search over D(f).
l Branch & bound. 



Searching over D(f)

l Destructive lower bound
– Iterate over the values v ∊ D(f), starting from 

min(D(f)).
– At each iteration, post the constraint f ≤  v and solve 

the CSP.
– The first feasible solution is guaranteed to be 

optimal. 
– Why destructive?

l Intermediate computation results are discarded. 



Destructive Lower Bound

l Solve with 1 colour   à fail
l Solve with 2 colours à fail
l Solve with 3 colours à success (optimal)



Searching over D(f)

l Destructive upper bound
– Iterate over (some of) the values v ∊ D(f), starting 

from max(D(f)).
– At each iteration, post the constraint f ≤  v and 

solve the CSP.
– For the next iteration, set v = f -1.
– When the problem is infeasible, the last solution 

is proven optimal. 



Destructive Upper Bound

l Solve with 8 colours à success with 5 colours
l Solve with 4 colours à success with 4 colours
l Solve with 3 colours à success with 3 colours
l Solve with 2 colours à fail (optimality with 3 colours 

proven)



Upper or Lower Bounds?

l Destructive lower bound
– CON: not an any time algorithm
– CON: small steps
– PRO: tighter constraints à more propagation
– PRO: provides lower bounds



Upper or Lower Bounds?

l Destructive lower bound
– CON: not an any time algorithm
– CON: small steps
– PRO: tighter constraints à more propagation
– PRO: provides lower bounds

l Destructive upper bound
– PRO: anytime algorithm
– PRO: larger steps
– CON: less propagation
– CON: no lower bounds



Binary Search

l Combine the advantages of both!
– Binary search over D(f).



Binary Search

l Main idea:
– keep both a (feasible) upper bound ub and an 

(infeasible) lower bound lb;
– solve by posting lb < f < (lb + ub)/2



Binary Search

l Main idea:
– keep both a (feasible) upper bound ub and an 

(infeasible) lower bound lb;
– solve by posting lb < f < (lb + ub)/2;
– if feasible, update ub



Binary Search

l Main idea:
– keep both a (feasible) upper bound ub and an 

(infeasible) lower bound lb;
– solve by posting lb < f < (lb + ub)/2;
– if feasible, update ub



Binary Search

l Main idea:
– keep both a (feasible) upper bound ub and an 

(infeasible) lower bound lb;
– solve by posting lb < f < (lb + ub)/2;
– if feasible, update ub; if infeasible, update lb



Binary Search

l Main idea:
– keep both a (feasible) upper bound ub and an 

(infeasible) lower bound lb;
– solve by posting lb < f < (lb + ub)/2;
– if feasible, update ub; if infeasible, update lb



Binary Search

l Main idea:
– keep both a (feasible) upper bound ub and an 

(infeasible) lower bound lb;
– solve by posting lb < f < (lb + ub)/2;
– if feasible, update ub; if infeasible, update lb;
– stop if a solution with f = lb+1 is found. 



Binary Search

l A compromise between destructive 
lower and upper bounding.
– Anytime algorithm.
– Lower bounds.
– Tight(ish) constraints on f à good 

propagation.
– Large steps. 



Binary Search

l Almost all information is discarded 
between each attempt.
àA lot of repeated work!

l Is there a more efficient method? 



Branch & Bound Algorithm

l Solves a sequence of CSPs via a single search tree 
and incorporates bounding in the search.

l How? 
– Each time a feasible solution is found, posts a new

bounding constraint which ensures that a future solution 
must be better than it.

– Backtracks and looks for a new solution with the additional 
bounding constraint, using the same search tree. 

– Repeats until infeasible:  the last solution found is optimal.



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B
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Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B



Optimal Map Colouring with B&B

l The solution is optimal, but we don’t know it 
yet!

l We need to finish exploring the search tree.
– Often called optimality proof. 



Conclusions on Optimization

l Main idea: solve a sequence of CSPs to 
solve a COP.

l 2 main approaches:
– Search over D(f)

l Destructive bounding and binary search.
l Different trade-offs.

– Branch and bound
l PRO: No waste of information (and a bit of more 

propagation).
l PRO: Anytime algorithm.
l CON: (Almost) no lower bounds. 



Tree: Formal Definition
• Def: A tree is a set of nodes (vertices) connected 

by edges (links) s.t. there is exactly one way to 

get from any node to any other node

• Which of the following are trees?



Tree: Formal Definition
• Def: A tree is a set of nodes (vertices) connected 

by edges (links) s.t. there is exactly one way to 

get from any node to any other node

• Which of the following are trees?

YES! No, it is 
a graph

No, it is 
a forest 

(i.e. multiple trees)



Fundamental Property
• Every non-empty tree with n nodes has exactly 
n-1 edges

• This property can also be used to demonstrate 
that a given data structure is NOT a tree



Rooted Tree
• A tree is a rooted tree if one of its nodes is distinguished as 

root

• This definition can be used in a recursive way 
– A rooted tree consists of a root node and a finite set of sub-trees, 

which are themselves rooted trees

– Base case when the set of sub-trees is empty



Some Terminology
• r is root
• y is a parent of  x and  z; r is a parent of y

• r, y and x are ancestors of x

• r, y are proper ancestors of x

• x, z are children of y

• x, y, z and u are descendants of r

• x and z are siblings
• all ancestors of u form a path from u to the root (u è z è y èr)

• w, x and u are leaf nodes (others are called internal nodes)

• The depth of a node is the length of the path to the root
– The depth of w, x and z is 2, of u is 3

• The height of a node is the length of the longest path to a leaf
– The height of y is 2

– What is the height of the tree?



Sub-tree & Ordered Tree
• A sub-tree is a node i plus all its descendants

– i is the root of the sub-tree
• In our example: y is the root of a sub-tree

• An ordered tree is a rooted tree in which the 
children of each node are ordered
– Order is important!



Binary Tree
• Def: A binary tree is an ordered tree which is either empty or 

consists of a root node and two sub-trees (left and right) which are 
themselves binary trees

• Which of the following are binary trees?

• Are these binary trees the same?
– Binary trees are ordered trees!


