PART III: Search

Constraint Solver

- Enumerates all possible variable-value combinations via a systematic backtracking tree search.
 - Guesses a value for each variable.
- During search, examines the constraints to remove inconsistent values from the domains of the future (unexplored) variables, via propagation.
 - Shrinks the domains of the future variables.

Backtracking Tree Search (BTS)

- Node \rightarrow variable X_i
- Branch \rightarrow decision on X_i
 - E.g., enumeration with single values from $D(X_i)$

Backtracking Tree Search (BTS)

- Variables are instantiated sequentially.
- By default depth-first traversal.

- Enumerates all possible variable-value combinations via a systematic backtracking tree search.
 - Guesses a value for each variable.

Shrinks the domains of the future variables.

- Whenever all the variables of a constraint is instantiated, the validity of the constraint is checked.
 - In case of dead-end, the most recently posted branching decision is retracted (chronological backtracking).
- Systematic search.
 - Eventually finds a solution or proves unsatisfiability.
 - Complexity O(dⁿ), exponential!

BTS interleaved with Propagation

 $D(X_1) = \{1,2\}$ $D(X_2) = D(X_3) = \{1, 2, 3\}$ $X_1 = 1$ $C_1: X_1 \neq X_2 C_2: X_2 < X_3$ X₂≠1 $X_2 = 1$ X₂=2 X₃≠1 $X_{3}=1$ X₃≠2 $X_3 = 2$

Propagation

 C_2 : D(X₂) = {1,2,3}, D(X₃) = {1,2,3}

X₁=1/ Propagation

 $C_1: D(X_2) = \{1, 2\}$ $C_2: D(X_3) = \{2, 3\}$

BTS interleaved with Propagation

Exponential size

Reduction of the search tree size

BTS + Forward Checking Propagation

BTS + AC Propagation

Outline

- Depth-first Search (DFS)
 - Branching Decisions
 - Branching/Search Heuristics
 - Randomization and Restarts
- Best-First Search (BFS)
 - Limited Discrepancy Search (LDS)
 - Depth-bounded Discrepancy Search (DDS)
- Constraint Optimization Problems

Branching Decisions

- Usually consists of posting a unary constraint on a chosen variable X_i.
- Enumeration (or labelling) with single values from $D(X_i)$.
 - d-way branching:
 - One branch is generated by $X_i = v_j$ for each $v_j \in D(X_i)$.
 - 2-way branching:
 - 2 branches are generated by X_i = v and X_i ≠ v for some v ∈ D(X_i).

Branching Decisions

- Usually consists of posting a unary constraint on a chosen variable X_i.
- Domain partitioning of $D(X_i)$.
 - k-way branching:
 - One branch is generated by $X_i \in S_j$ for each partition S_j of D_i .
 - 2-way branching:
 - 2 branches are generated by $X_i \in S$ and $X_i \notin S$ for some $S \subseteq D_i$.

Branching/Search Heuristics

• Guide the search.

- For a branching decision, need to choose a variable X_i and a (set of) value v_i.
- Which variable next? Which value(s) next?
- Known also as variable and value ordering (vvo) heuristics.
- Static vs dynamic heuristics.
- Problem specific vs generic heuristics.

Static Variable Ordering Heuristics

- A variable is associated with each level.
- Branches are generated in the same order all over the tree.
- Calculated once and for all before search starts, hence cheap to evaluate.

Some Static Generic VOHs

- Lexicographic: The order of definition in case of a sequence of variables:
 - $\ \ X_1, \, X_2, \, \ldots, \, X_n$
- Top down, left to right, row by row in case of a matrix of variables:

$$\begin{array}{rl} - & X_{11}, \, X_{12}, \, \ldots, \, X_{1m} \\ & X_{21}, \, X_{22}, \, \ldots, \, X_{2m} \end{array}$$

 $X_{n1}, X_{n2}, ..., X_{nm}$

 $\mathbf{x}_{i} \in \mathbf{x}_{i}$

Dynamic Variable Ordering Heuristics

- At any node, any variable & branch can be considered.
- Decided dynamically during search, hence costly.
- Takes into account the current state of the search tree.

Search Heuristics

- For feasible problems, choose variables and values that are likely to yield a solution.
 - In general, no guarantee of feasibility.
- What if we make a mistake?
 - Infeasible sub-problem!
 - We need to explore the whole sub-tree before backtracking!
 - We should explore the sub-tree as quickly as possible.

Heuristics for Infeasible Problems

- Fail-first (FF) principle: Try first where you are most likely to fail.
 - Aims at proving, as soon as possible, that the search is in a subtree with no feasible solutions.
- How do we know if a CSP is feasible or not?
- Trade-off:
 - choose next the variable that is most likely to cause failure;
 - choose next the value that is most likely to be part of a solution (least constrained value).
- Main focus on Variable Ordering Heuristics (VOHs).
 - To backtrack from an infeasible sub-problem, we need to explore all the values in the domain of a variable.

Generic Dynamic VOHs based on FF

- Minimum domain (dom)
 - Choose next the variable with minimum domain size.
 - Idea: minimize the search tree size.

• Consider the order X₁, X₂, X₃.

 $X_1 \in \{0, 1, 2, 3\}, X_2 \in \{0, 1, 2\}, X_3 \in \{0, 1\}$

• Consider the order X₃, X₂, X₁.

 $X_3 \in \{0,\,1\}$, $X_2 \in \{0,\,1,\,2\},\,X_1 \in \{0,\,1,\,2,\,3\}$

• If propagation prunes a value at depth 1...

• ...the effect is much stronger with the second ordering!

Generic Dynamic VOHs based on FF

- Minimum domain (dom)
 - Choose next the variable with minimum domain size.
 - Idea: minimize the search tree size.
- Most constrained (deg)
 - Choose next the variable involved in most number of constraints.
 - Idea: maximize constraint propagation.

Most Constrained Variables

Generic Dynamic VOHs based on FF

- Minimum domain (dom)
 - Choose next the variable with minimum domain.
 - Idea: minimize the search tree size.
- Most constrained (deg)
 - Choose next the variable involved in most number of constraints.
 - Idea: maximize constraint propagation.
- Combination
 - Minimize dom / deg

Map Colouring

Maintain AC during search with 2-way branching using various heuristics.

Lexicographic Ordering

Lexicographic Ordering

Maximum Degree

Maximum Degree

Minimum Domain

Minimum Domain

Weighted Degree Heuristic

- Constraints are weighted.
 - Initially set to 1.
- During the propagation of a constraint c, its weight w(c) is incremented by 1 if the constraint fails.
- The weighted degree of a variable X_i:

$$w(X_i) = \sum_{c \text{ s.t. } X_i \in X(c)} w(c)$$

• Domain over weighted degree heuristic (domWdeg):

- Choose the variable X_i with minimum dom(X_i) / w(X_i).

- Given a collection of instances of a problem, we often observe some exceptionally hard instances that take exceptionally longer time to solve.
 - Large impact on the runtime distributions for a given set of instances.

Latin Squares

• Given an nxn matrix and n colours, a Latin square of order n is a coloured matrix such that all cells are coloured, each colour appears exactly once in each row and in each column.

• Applications in fiber optic networks, design of statistical experiments, scheduling and timetabling.

Quasigroup Completion Problem

• Given a partial assignment of colours, can the partial Latin square (quasigroup) be completed so that we obtain a Latin square?

Quasigroup Completion Problem

11x11 matrix with 30% pre-assignments

- Not a characteristic of the instance!
 - The same behaviour is observed if we run several times the same instance while varying some parameter (like the variable ordering) of the solver.
 - For some combination instance + solver parameters, we get trapped into an exponential subtree.
- Intuitive reason:
 - If we make a mistake early during search, we get stuck in trashing.
 - Remember the puzzle example!
 - Different heuristics lead to "bad" mistakes on different instances.
- Observation: such mistakes are seemingly random.

Randomization

- Add some randomized parameter in search. E.g.,
 - Pick (some) variables/values at random.
 - Break ties randomly.
- Given the same random seed, the solver will explore the same tree, however it will never explore two identical subproblems in the same way.

• Restarting

- Restart the search, after certain amount of resources are consumed.
 - Usually in the form of search steps, such as the number of visited nodes.
- In the subsequent runs, search differently.
 - Introduce randomization.
 - Learn from the accumulated experiences of previous runs.

- Randomization + restarts eliminates the huge variance in solver performance.
- Without randomization + restarts

• With randomization + restarts

Restart Strategies

- Constant restart
 - Restart after using L resources.
- Geometric restart
 - Restart after L resources, with the new limit α^*L .
 - Ends up being L, α^*L , $\alpha^{2*}L$, $\alpha^{3*}L$, ...
- Luby restart
 - Restart after s[i]*L resources where s[i] is the ith number in the Luby sequence = [1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ...], which repeats two copies of the sequence ending in 2ⁱ before adding the number 2ⁱ⁺¹.

domWdeg & Restarts

domWdeg heuristic works well with restart.

- Collected fail counts can be carried over to subsequent runs.
- domWdeg combined with random choice of values can be very effective!

Problems with DFS

- For many problems, heuristics are more accurate at deep nodes.
 - Often first decision is wrong.
- DFS:
 - puts tremendous burden on the heuristics early in the search and light burden deep in the search;
 - consequently mistakes made near the root of the tree can be costly to discover and undo.
 - Remember the puzzle example!

Problems with DFS

- Best-first search (BFS) strategy is of interest.
- BFS explores first the nodes that are most promising according to some heuristic evaluation.

Outline

• Depth-first Search (DFS)

- Branching Decisions
- Branching Heuristics
- Randomization and Restarts
- Best-First Search (BFS)
 - Limited Discrepancy Search (LDS)
 - Depth-bounded Discrepancy Search (DDS)
- Constraint Optimization Problems

Limited Discrepancy Search

- A discrepancy is any decision in a search tree that does not follow the heuristic (any right branch out of a node).
- LDS

. . .

- Trusts the heuristic and gives priority to the left branches.
- Iteratively searches the tree by increasing number of discrepancies.
 - On the 0th iteration, explore the leftmost branches.
 - On the 1^{sth} iteration, explore all left branches except 1 branch.
 - On the 2nd iteration, explore all left branches except 2 branches.

Limited Discrepancy Search

• LDS

- On the ith iteration, LDS visits all leaf nodes with i discrepancies.
- Motivation: the branching heuristic has hopefully made a few mistakes, and LDS allows a small number of mistakes to be corrected at little cost.
- By contrast, DFS needs to explore a significant fraction of the tree before undoing an early mistake.

Limited Discrepancy Search

Oth iteration

1st iteration

2nd iteration

Problems with LDS

- All discrepancies are alike, irrespective of their depth.
- Heuristics tend to be less informed and make more mistakes at the top of the search tree.
- It is worth exploring discrepancies at the top of the tree before those at the bottom.

Depth-bounded Discrepancy Search

- Biases search to discrepancies high in the tree via an iteratively increasing depth bound.
 - Discrepancies below this depth are prohibited.
 - On the 0^{th} iteration, DDS = LDS.
 - On the ith iteration, DDS explores those branches on which discrepancies occur at a depth of i or less.
 - At lesser depths, DDS explores more discrepancies.
 - At greater depths, DDS follows the heuristic.

Depth-bounded Discrepancy Search

0th iteration

1st iteration

2nd iteration

Outline

• Depth-first Search (DFS)

- Branching Decisions
- Branching Heuristics
- Randomization and Restarts
- Best-First Search (BFS)
 - Limited Discrepancy Search (LDS)
 - Depth-bounded Discrepancy Search (DDS)
- Constraint Optimization Problems

Constraint Optimization Problems (COPs)

- CSP enhanced with an optimization criterion, e.g.:
 - minimum cost;
 - shortest distance;
 - fastest route;
 - maximum profit.
- Formally, <X,D,C,f> where f is the formalization of the optimization criterion as an objective function/variable. Goal: minimize f (maximize –f).

Optimal Map Colouring

• What is the minimum number of colours necessary to colour the neighbouring regions differently?

Optimal Map Colouring

- Variables and Domains
 - X_i for each of n regions with domain [1..n]
- Constraints
 - $X_i \neq X_j$ for each neighbour region i and j
- Objective function/variable
 - $f = max(X_i)$
- Objective: minimize f

Solving COPs

- Enumeration.
 - Doesn't scale up in case of too many solutions.
- Search over D(f).
- Branch & bound.

Searching over D(f)

- Destructive lower bound
 - Iterate over the values v ∈ D(f), starting from min(D(f)).
 - At each iteration, post the constraint f ≤ v and solve the CSP.
 - The first feasible solution is guaranteed to be optimal.
 - Why destructive?
 - Intermediate computation results are discarded.

Destructive Lower Bound

- Solve with 1 colour \rightarrow fail
- Solve with 2 colours \rightarrow fail
- Solve with 3 colours \rightarrow success (optimal)

Searching over D(f)

- Destructive upper bound
 - Iterate over (some of) the values v ∈ D(f), starting from max(D(f)).
 - At each iteration, post the constraint f ≤ v and solve the CSP.
 - For the next iteration, set $\mathbf{v} = \mathbf{f} 1$.
 - When the problem is infeasible, the last solution is proven optimal.

Destructive Upper Bound

- Solve with 8 colours → success with 5 colours
- Solve with 4 colours → success with 4 colours
- Solve with 3 colours → success with 3 colours
- Solve with 2 colours → fail (optimality with 3 colours proven)

Upper or Lower Bounds?

- Destructive lower bound
 - CON: not an any time algorithm
 - CON: small steps
 - PRO: tighter constraints \rightarrow more propagation
 - PRO: provides lower bounds

Upper or Lower Bounds?

- Destructive lower bound
 - CON: not an any time algorithm
 - CON: small steps
 - PRO: tighter constraints \rightarrow more propagation
 - PRO: provides lower bounds
- Destructive upper bound
 - PRO: anytime algorithm
 - PRO: larger steps
 - CON: less propagation
 - CON: no lower bounds

Binary Search

• Combine the advantages of both!

- Binary search over D(f).

- keep both a (feasible) upper bound ub and an (infeasible) lower bound lb;
- solve by posting $\mathbf{lb} < \mathbf{f} < (\mathbf{lb} + \mathbf{ub})/2$

- Main idea:
 - keep both a (feasible) upper bound ub and an (infeasible) lower bound lb;
 - solve by posting lb < f < (lb + ub)/2;
 - if feasible, update ub

- Main idea:
 - keep both a (feasible) upper bound ub and an (infeasible) lower bound lb;
 - solve by posting lb < f < (lb + ub)/2;
 - if feasible, update ub

- Main idea:
 - keep both a (feasible) upper bound ub and an (infeasible) lower bound lb;
 - solve by posting lb < f < (lb + ub)/2;
 - if feasible, update **ub**; if infeasible, update **lb**

• Main idea:

- keep both a (feasible) upper bound ub and an (infeasible) lower bound lb;
- solve by posting lb < f < (lb + ub)/2;
- if feasible, update **ub**; if infeasible, update **lb**

• Main idea:

- keep both a (feasible) upper bound ub and an (infeasible) lower bound lb;
- solve by posting lb < f < (lb + ub)/2;
- if feasible, update **ub**; if infeasible, update **lb**;
- stop if a solution with **f** = **lb**+1 is found.

- A compromise between destructive lower and upper bounding.
 - Anytime algorithm.
 - Lower bounds.
 - Tight(ish) constraints on f → good propagation.
 - Large steps.

- Almost all information is discarded between each attempt.
 → A lot of repeated work!
- Is there a more efficient method?

Branch & Bound Algorithm

- Solves a sequence of CSPs via a single search tree and incorporates bounding in the search.
- How?
 - Each time a feasible solution is found, posts a new bounding constraint which ensures that a future solution must be better than it.
 - Backtracks and looks for a new solution with the additional bounding constraint, using the same search tree.
 - Repeats until infeasible: the last solution found is optimal.

$$x_0 = 1$$

$$x_1 = 2$$

- The solution is optimal, but we don't know it yet!
- We need to finish exploring the search tree.
 - Often called optimality proof.

Conclusions on Optimization

- Main idea: solve a sequence of CSPs to solve a COP.
- 2 main approaches:
 - Search over D(f)
 - Destructive bounding and binary search.
 - Different trade-offs.
 - Branch and bound
 - PRO: No waste of information (and a bit of more propagation).
 - PRO: Anytime algorithm.
 - CON: (Almost) no lower bounds.

Tree: Formal Definition

- *Def*: A tree is a set of **nodes** (vertices) connected by **edges** (links) s.t. there is **exactly one** way to get from any node to any other node
- Which of the following are trees?

Tree: Formal Definition

- *Def*: A tree is a set of **nodes** (vertices) connected by **edges** (links) s.t. there is **exactly one** way to get from any node to any other node
- Which of the following are trees?

No, it is

a graph

o j

YES!

No, it is a forest (i.e. multiple trees)

Fundamental Property

- Every non-empty tree with n nodes has exactly n-1 edges
- This property can also be used to demonstrate that a given data structure is NOT a tree

nodes: 9, edges: 9

Rooted Tree

 A tree is a rooted tree if one of its nodes is distinguished as root

- This definition can be used in a recursive way
 - A rooted tree consists of a root node and a finite set of sub-trees, which are themselves rooted trees
 - Base case when the set of sub-trees is empty

Some Terminology

- r is root
- y is a parent of x and z; r is a parent of y
- r, y and x are **ancestors** of x
- r, y are proper ancestors of x
- x, z are children of y
- x, y, z and u are descendants of r
- x and z are siblings

- all ancestors of u form a **path** from u to the root $(u \rightarrow z \rightarrow y \rightarrow r)$
- w, x and u are **leaf nodes** (others are called **internal nodes**)
- The **depth** of a node is the length of the path to the root
 - The depth of w, x and z is 2, of u is 3
- The height of a node is the length of the longest path to a leaf
 - The height of y is 2
 - What is the height of the tree?

Sub-tree & Ordered Tree

- A **sub-tree** is a node **i** plus all its descendants
 - i is the root of the sub-tree
 - In our example: **y** is the root of a sub-tree

- An ordered tree is a rooted tree in which the children of each node are ordered
 - Order is important!

Binary Tree

• *Def*: A **binary tree** is an ordered tree which is either empty or consists of a root node and two sub-trees (left and right) which are themselves binary trees

• Which of the following are binary trees?

- Are these binary trees the same?
 - Binary trees are ordered trees!