Dedicated Propagation Algorithms

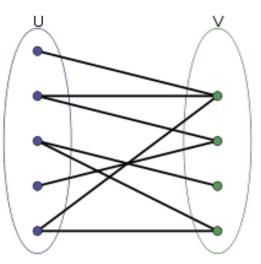
- Dedicated ad-hoc algorithms provide effective and efficient propagation.
- Often:
 - GAC is maintained in polynomial time;
 - many more inconsistent values are detected compared to the decompositions;
 - computation is done incrementally.

A GAC Propagation Algorithm

- Maintains GAC on alldifferent([X₁, X₂, ..., X_k]) and runs in polynomial time.
 - Jean-Charles Régin, "A Filtering Algorithm for Constraints of Difference in CSPs", in the Proc. of AAAI'1994
- Establishes a relation between the solutions of the constraint and the properties of a graph.
 - Maximal matching in a bipartite graph.
- A similar algorithm can be obtained with the use of flow theory.

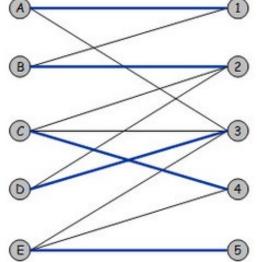
A GAC Algorithm for all different

 A bipartite graph is a graph whose vertices are divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.



A GAC Algorithm for all different

- A matching in a graph is a subset of its edges such that no two edges have a node in common.
 - Maximal matching is the largest possible matching.
- In a bipartite graph, maximal matching covers one set of nodes.



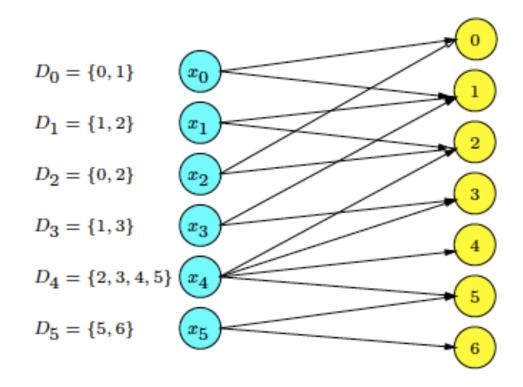
A GAC Algorithm for all different

Observation

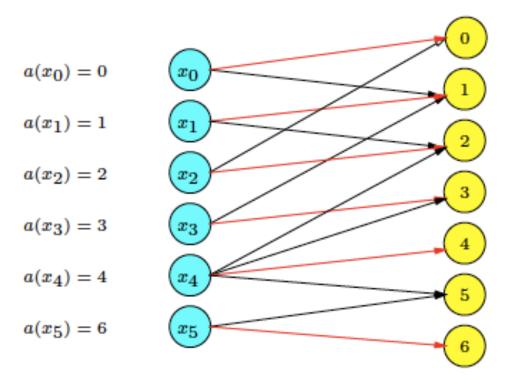
- Given a bipartite graph G constructed between the variables
 [X₁, X₂, ..., X_k] and their possible values (variable-value graph),
- an assignment of values to the variables is a solution iff it corresponds to a maximal matching in G.
 - A maximal matching covers all the variables.
- By computing all maximal matchings, we can find all the consistent partial assignments.

Example

Variable-value graph



A Maximal Matching



Another Maximal Matching

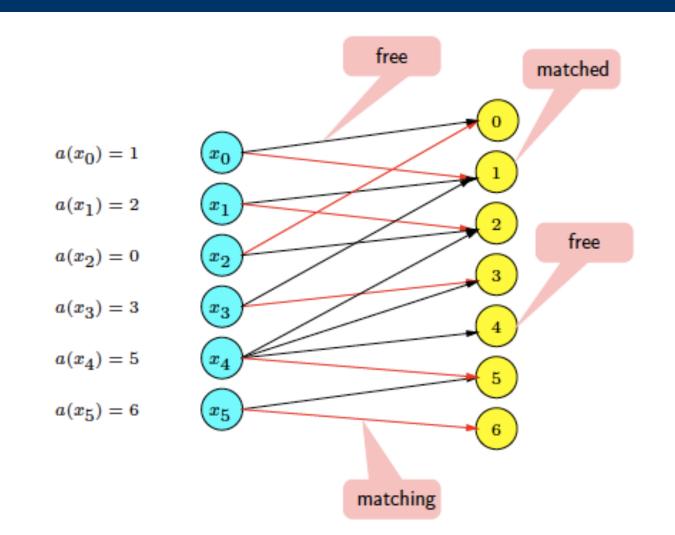
 $a(x_0) = 1$ $a(x_1) = 2$ $a(x_2) = 0$ $a(x_3) = 3$ $a(x_4) = 5$ $a(x_5) = 6$ x_0 x_0 x_0 x_1 x_1 x_1 x_2 x_2 x_3 x_4 x_4 x_4 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_6 x_5

Matching Notations

• Edge

- matching if takes part in a matching;
- free otherwise.
- Node
 - matched if incident to a matching edge;
 - free otherwise.
- Vital edge
 - belongs to every maximal matching.

Free, Matched, Matching



Algorithm

- Compute all maximal matchings.
- No maximal matching exists \rightarrow failure.
- An edge free in all maximal matchings →
 - Remove the edge.
 - Amounts to removing the corresponding value from the domain of the corresponding variable.
- A vital edge \rightarrow
 - Keep the edge.
 - Amounts to assigning the corresponding value to the corresponding variable.
- Edges matching in some but not all maximal matchings \rightarrow
 - Keep the edge.

All Maximal Matchings

- Inefficient to compute them naïvely.
- Use matching theory to compute them efficiently.
 - One maximal matching can describe all maximal matchings!

Alternating Path and Cycle

- Alternating path
 - Simple path with edges alternating free and matching.
- Alternating cycle
 - Cycle with edges alternating free and matching.
- Length of path/cycle
 - Number of edges in the path/cycle.
- Even path/cycle
 - Path/cycle of even length.

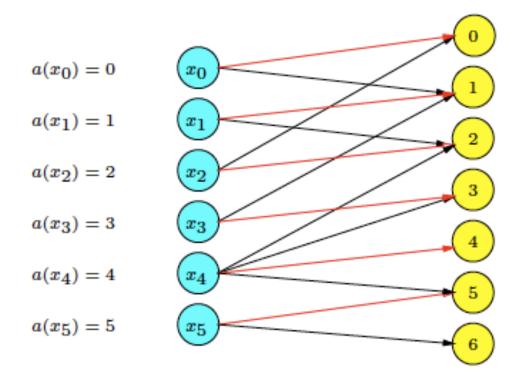
Matching Theory

- A result due to Claude Berge in 1970.
- An edge e belongs to a maximal matching iff for some arbitrary maximal matching M:
 - either e belongs to M;
 - or e belongs to even alternating path starting at a free node;
 - or e belongs to an even alternating cycle.

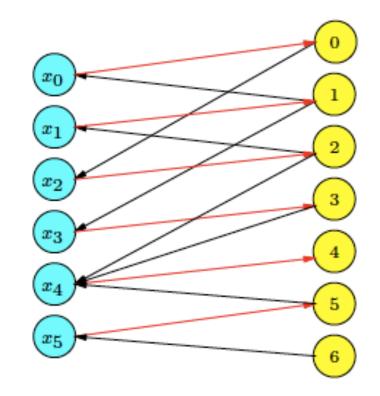
Oriented Graph

- To compute alternating path/cycles, we will orient edges of an arbitrary maximal matching:
 - matching edges \rightarrow from variable to value;
 - free edges \rightarrow from value to variable.

An Arbitrary Maximal Matching



Oriented Graph



Even Alternating Paths

- Start from a free node and search for all nodes on directed simple path.
 - Mark all edges on path.
 - Alternation built-in.
- Start from a value node.
 - Variable nodes are all matched.
- Finish at a value node for even length.

Even Alternating Paths

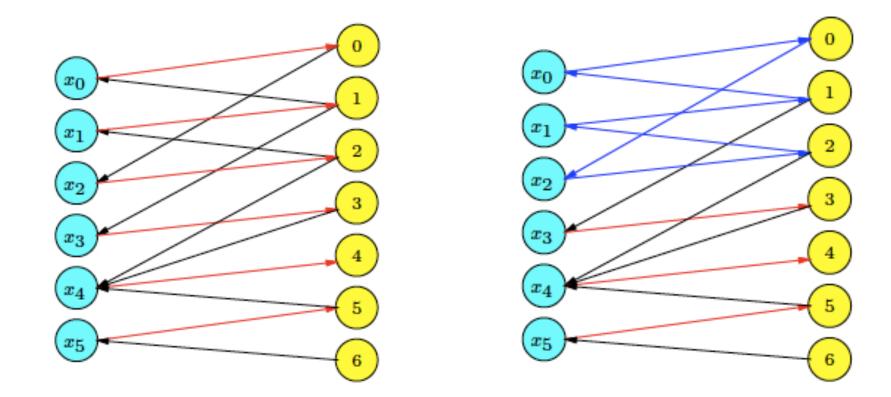


• Intuition: edges can be permuted.

Even Alternating Cycles

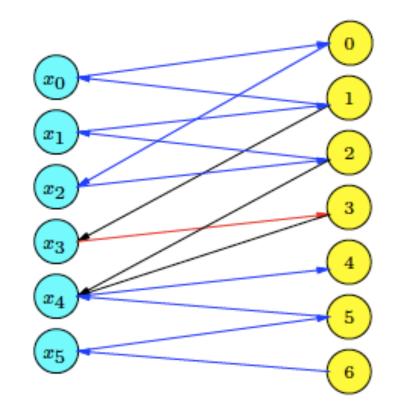
- Compute strongly connected components (SCCs).
 - Two nodes a and b are strongly connected iff there is a path from a to b and a path from b to a.
 - Strongly connected component: any two nodes are strongly connected.
 - Alternation and even length built-in.
- Mark all edges in all strongly connected components.

Even Alternating Cycles



• Intuition: variables consume all the values.

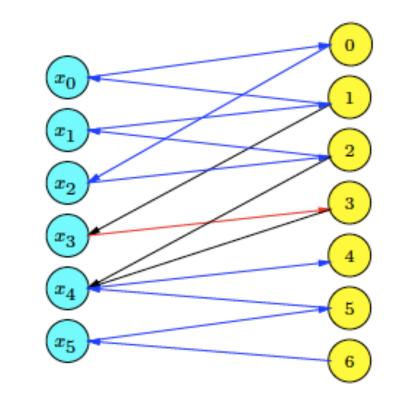
All Marked Edges



Removing Edges

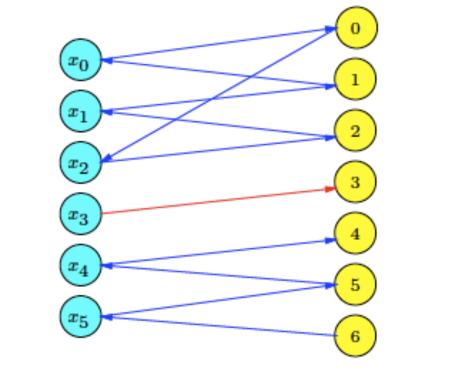
- Remove the edges which are:
 - free (does not occur in our arbitrary maximal matching) and not marked (does not occur in any maximal matching);
 - marked as black in our example.
- Keep the edge matched and not marked.
 - Marked as red in our example.
 - Vital edge!

Removing Edges



 $D(X_0) = \{0,1\}, D(X_1) = \{1,2\}, D(X_2) = \{0,2\}, D(X_3) = \{1,3\}$ $D(X_4) = \{2,3,4,5\}, D(X_5) = \{5,6\}$

Edges Removed



 $D(X_0) = \{0,1\}, D(X_1) = \{1,2\}, D(X_2) = \{0,2\}, D(X_3) = \{1,3\}$ $D(X_4) = \{2,3,4,5\}, D(X_5) = \{5,6\}$

Summary of the Algorithm

- Construct the variable-value graph.
- Find a maximal matching M; otherwise fail.
- Orient graph (done while computing M).
- Mark edges starting from free value nodes using graph search.
- Compute SCCs and mark joining edges.
- Remove not marked and free edges.

Incremental Properties

- Keep the variable and value graph between different invocations.
- When re-executed:
 - remove marks on edges;
 - remove edges not in the domains of the respective variables;
 - if a matching edge is removed, compute a new maximal matching;
 - otherwise just repeat marking and removal.

Runtime Complexity

- all different ([X₁, X₂, ..., X_k]) with m = $\sum_{i \in \{1,..,k\}} |D(X_i)|$
- First call
 - Consistency check in O(\sqrt{k} m) time.
 - Matching $\rightarrow O(\sqrt{k} m)$
 - Alternating path \rightarrow O(m)
 - SCCs $\rightarrow O(k+m)$
 - Establishing GAC in O(m) time.
- After q variable domains have been modified
 - Matching in O(min{qm, \sqrt{k} m}) time.
 - Establishing GAC in O(m) time.

Dedicated Ad-hoc Algorithms

- Is it always easy to develop a dedicated algorithm for a given constraint?
- A nice semantics often gives us a clue!
 - Graph theory
 - Flow theory
 - Combinatorics
 - Automata theory
 - Dynamic programming
 - Complexity theory, ...

Dedicated Ad-hoc Algorithms

- GAC may as well be NP-hard!
 - E.g., nvalue, sequence+gcc, gcc using variables for occurrences.
 - Algorithms which maintain weaker consistencies are of interest.
 - BC

• . . .

- Between GAC and BC
- GAC on some variables, BC on others

Dedicated Ad-hoc Algorithms

- What if it is difficult to:
 - decompose a constraint;
 - build an efficient and effective dedicated algorithm?

Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
 - Decompositions
 - Ad-hoc Algorithms
- Global Constraints for Generic Purposes

Global Constraints for Generic Purposes

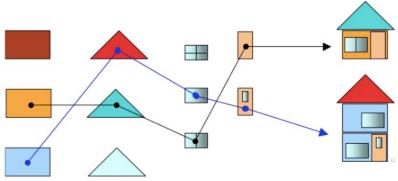
- Help propagate a wide range of constraints.
 - Table constraint.
 - Formal language-based constraints.

Table (Extensional) Constraint

- $C(X_1, X_2) = \{(0,0), (0,2), (1,3), (2,1)\}$
- Several algorithms exist to maintain GAC.
 - More efficient than $O(|D(X_1)|^*|D(X_2)|^*...^*|D(X_k)|)$.
 - More effective than the decomposition.
 - E.g., (X₁= 0 AND X₂ = 2 AND X₃ = 2) OR (X₁= 1 AND X₂ = 1 AND X₃ = 2) OR (X₁= 1 AND X₂ = 2 AND X₃ = 3)

Product Configuration Problems

- Compatibility constraints on product components.
 - Often only certain combination of components work together.
- Compatibility may not be a simple pairwise relationship.



A Configuration Problem

 Valid hw products are defined in a table of compatible components (Products):

Products	Motherboard	CPU	Freq	RAM	Hard drive
Product ₁	ТуреА	Intel	2GHz	5GB	100GB
Product ₂	ТуреВ	Intel	3GHz	8GB	200GB
Product ₃	ТуреВ	Amd	2GHz	5GB	200GB

- Assume we have products P_i to configure each with 5 components for motherboard, CPU, Freq, RAM and h. drive [X_{i1},X_{i2},X_{i3}, X_{i4}, X_{i5}].
- For each product P_i , we post table([$X_{i1}, X_{i2}, X_{i3}, X_{i4}, X_{i5}$], Products).

Crossword Puzzles

- Valid words are defined in a table of compatible letters (i.e. dictionary).
 - table([X₁,X₂,X₃], dictionary)
 - table([X₁,X₁₃,X₁₆], dictionary)
 - $table([X_4, X_5, X_6, X_7], dictionary)$
- No simple way to decide acceptable words other than to put them in a table.

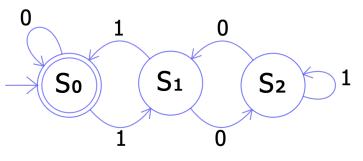
¹ C	² A	³Т		⁴ T	⁵s	⁶ N	⁷ I			⁸ P	°E	¹⁰ R	¹¹ C	¹² H
¹³ E	С	Α		¹⁴ H	т	0	G		¹⁵ T	υ	R	Т	L	Е
¹⁶ S	н	Γ	¹⁷ B	А	I	N	υ		¹⁸ 0	R	R		190	R
		20 L	Α	I	с		²¹ A	²² B	Е	R		23 F	w	D
²⁴ B	²⁵ O	×	L		²⁶ K	²⁷ A	Z	Е		²⁸ S	²⁹ H	Е	D	Т
30 S	×	Α	L	³¹ C		³² R	Α	s	ззР		³⁴ 0	W	E	Ν
³⁵ E	Ν	G		³⁶ H	³⁷ A	м	s	т	Е	38 R	s		39 R	G
		40 S	⁴¹ S	Т	М				⁴² T	Α	Е	⁴³ M		
⁴⁴ S	⁴⁵F		⁴⁶ P	Α	R	⁴⁷ A	⁴⁸ K	⁴⁹ E	Е	т		٥°U	⁵¹ S	⁵² A
⁵³ C	Е	⁵⁴	с		⁵⁵ E	Y	Е	s		⁵⁶ S	57 K	I	Ν	s
58 R	E	Т	Α	59 W		⁶⁰ A	Ν	E	⁶¹ W		⁶² E	R	Е	н
⁶³ A	D	s		⁶⁴ H	⁶⁵ A	н	Z		000	⁶⁷ K	R	Α		
⁶⁸ T	E		⁶⁹ A	E	s		⁷⁰ E	⁷¹ U	к	Α	Ν	U	⁷² B	⁷³ A
⁷⁴ C	R	⁷⁵ A	Т	Е	s		⁷⁶ L	Α	Е	R		″Q	U	о
⁷⁸ H	s	Α	Е	L			⁷⁹ S	Е	Ν	т		⁸⁰ A	т	L

Formal Language-based Constraints

- The table constraint requires precomputing all the solutions of a constraint.
 - May not always be possible or practical.
- We can use a deterministic finite-state automaton to define the solutions.
 - Useful especially when valid assignments need to obey certain patterns.

Deterministic Finite State Automaton

- A dfsa is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string.
 - Recognizes a regular language.
- E.g., a dfa that accepts binary numbers that are multiples of 3.



- Some accepted strings: 0, 11, 110, 1100, 1001, 10111101, ...
- Not accepted strings: 10, 100, 101, 10100, ...

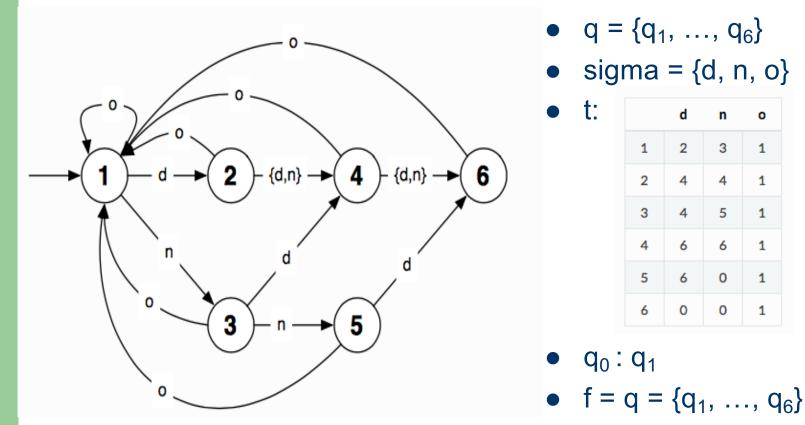
Regular Constraint

- A dfsa A is defined by a 5-tuple (q, sigma, t, q_0 , f) where:
 - q : a finite set of states
 - sigma: a set of symbols (i.e. alphabet)
 - t: a partial transition function q x sigma \rightarrow q
 - q_0 : initial state
 - $f \subseteq q$: accepting (final) states
- regular([X₁, X₂, ..., X_k], A) holds iff <X₁, X₂, ..., X_k> forms a string accepted by a dfsa A.

Rostering Problems

- Shifts are subject to regulations.
 - E.g., successive night shifts must be limited.
- In a nurse rostering problem, suppose:
 - each nurse is scheduled for each day either: (d) on day shift, (n) on night shift, or (o) off;
 - in each four day period, a nurse must have at least one day off;
 - no nurse can be scheduled for 3 night shifts in a row.

A Nurse Rostering Problem



- Assume nurses N_i to be scheduled for 30 days $[D_{i1}, \ldots, D_{i30}]$.
- For each nurse N_i, we post regular([D_{i1},..., D_{i30}], A)

Regular Constraint

- Useful in sequencing and rostering problems.
- Many constraints are instances of regular:
 - among, lex, precedence, stretch, ...
- Efficient GAC propagation with a dedicated algorithm and a decomposition into a sequence of ternary constraints.

– Another example of the power of decompositions!