
Dedicated Propagation Algorithms

l Dedicated ad-hoc algorithms provide 
effective and efficient propagation.

l Often:
– GAC is maintained in polynomial time;
– many more inconsistent values are detected 

compared to the decompositions;
– computation is done incrementally. 



A GAC Propagation Algorithm

l Maintains GAC on alldifferent([X1, X2, …, Xk]) and runs 
in polynomial time.
– Jean-Charles Régin, “A Filtering Algorithm for Constraints of 

Difference in CSPs”, in the Proc. of AAAI’1994

l Establishes a relation between the solutions of  the 
constraint and the properties of a graph.
– Maximal matching in a bipartite graph.

l A similar algorithm can be obtained with the use of flow 
theory. 



A GAC Algorithm for alldifferent

l A bipartite graph is a  graph whose vertices are divided 
into two disjoint sets U and V such that every edge 
connects a vertex in  U to one in  V.



A GAC Algorithm for alldifferent

l A matching in a graph is a subset of its edges such that 
no two edges have a node in common.
– Maximal matching is the largest possible matching.

l In a bipartite graph, maximal matching covers one set of 
nodes.



A GAC Algorithm for alldifferent

l Observation
– Given a bipartite graph G constructed between the variables                

[X1, X2, …, Xk] and their possible values (variable-value graph),
– an assignment of values to the variables is a solution iff it 

corresponds to a maximal matching in G. 
l A maximal matching covers all the variables. 

– By computing all maximal matchings, we can find all the 
consistent partial assignments. 



Example

Variable-value graph



A Maximal Matching



Another Maximal Matching



Matching Notations

l Edge
– matching if takes part in a matching;
– free otherwise.

l Node
– matched if incident to a matching edge;
– free otherwise. 

l Vital edge
– belongs to every maximal matching.



Free, Matched, Matching



Algorithm

l Compute all maximal matchings.
l No maximal matching exists à failure.
l An edge free in all maximal matchings à

– Remove the edge.
– Amounts to removing the corresponding value from the domain of  the 

corresponding variable.
l A vital edge à

– Keep the edge.
– Amounts to assigning the corresponding value to the corresponding 

variable.
l Edges matching in some but not all maximal matchings à

– Keep the edge.



All Maximal Matchings

l Inefficient to compute them naïvely. 
l Use matching theory to compute them efficiently. 

– One maximal matching can describe all maximal 
matchings!



Alternating Path and Cycle

l Alternating path
– Simple path with edges alternating free and matching.

l Alternating cycle
– Cycle with edges alternating free and matching.

l Length of path/cycle
– Number of edges in the path/cycle.

l Even path/cycle
– Path/cycle of even length.



Matching Theory

l A result due to Claude Berge in 1970. 
l An edge e belongs to a maximal matching iff

for some arbitrary maximal matching M:
– either e belongs to M;
– or e belongs to even alternating path starting at a 

free node;
– or e belongs to an even alternating cycle. 



Oriented Graph

l To compute alternating path/cycles, we will 
orient edges of an arbitrary maximal matching:
– matching edges à from variable to value;
– free edges à from value to variable.



An Arbitrary Maximal Matching



Oriented Graph



Even Alternating Paths

l Start from a free node and search for all nodes on 
directed simple path.
– Mark all edges on path.
– Alternation built-in.

l Start from a value node.
– Variable nodes are all matched. 

l Finish at a value node for even length. 



Even Alternating Paths

• Intuition: edges can be permuted.



Even Alternating Cycles

l Compute strongly connected components (SCCs).
– Two nodes a and b are strongly connected iff there is a path 

from a to b and a path from b to a. 
– Strongly connected component: any two nodes are strongly 

connected.  
– Alternation and even length built-in. 

l Mark all edges in all strongly connected components. 



Even Alternating Cycles

• Intuition: variables consume all the values. 



All Marked Edges



Removing Edges

l Remove the edges which are:
– free (does not occur in our arbitrary maximal matching) and 

not marked (does not occur in any maximal matching);
– marked as black in our example.

l Keep the edge matched and not marked.
– Marked as red in our example. 
– Vital edge!



Removing Edges

D(X0) = {0,1}, D(X1) = {1,2}, D(X2) = {0,2}, D(X3) = {1,3}
D(X4) = {2,3,4,5}, D(X5) = {5,6} 



Edges Removed

D(X0) = {0,1}, D(X1) = {1,2}, D(X2) = {0,2}, D(X3) = {1,3}
D(X4) = {2,3,4,5}, D(X5) = {5,6} 



Summary of the Algorithm

l Construct the variable-value graph.
l Find a maximal matching M; otherwise fail.
l Orient graph (done while computing M). 
l Mark edges starting from free value nodes using 

graph search.
l Compute SCCs and mark joining edges. 
l Remove not marked and free edges. 



Incremental Properties

l Keep the variable and value graph between 
different invocations. 

l When re-executed:
– remove marks on edges;
– remove edges not in the domains of the 

respective variables;
– if a matching edge is removed, compute a new 

maximal matching;
– otherwise just repeat marking and removal. 



Runtime Complexity

D(Xi )
i∈{1,..k}
∑



Dedicated Ad-hoc Algorithms

l Is it always easy to develop a dedicated 
algorithm for a given constraint?

l A nice semantics often gives us a clue!
– Graph theory
– Flow theory
– Combinatorics
– Automata theory
– Dynamic programming
– Complexity theory, …



Dedicated Ad-hoc Algorithms

l GAC may as well be NP-hard!
– E.g., nvalue, sequence+gcc, gcc using variables 

for occurrences.
– Algorithms which maintain weaker consistencies 

are of interest.
l BC
l Between GAC and BC
l GAC on some variables, BC on others
l …



Dedicated Ad-hoc Algorithms

l What if it is difficult to:
– decompose a constraint;
– build an efficient and effective dedicated 

algorithm?



Outline

l Local Consistency
– Generalized Arc Consistency (GAC)
– Bounds Consistency (BC)

l Constraint Propagation
– Propagation Algorithms

l Specialized Propagation 
– Global Constraints

l Decompositions
l Ad-hoc Algorithms

l Global Constraints for Generic Purposes



Global Constraints for Generic Purposes

l Help propagate a wide range of constraints.
– Table constraint.
– Formal language-based constraints.



Table (Extensional) Constraint

l C(X1, X2) = {(0,0), (0,2), (1,3), (2,1)}
l Several algorithms exist to maintain GAC.

– More efficient than O(|D(X1)|*|D(X2)|*…*|D(Xk)|) .  
– More effective than the decomposition.

l E.g., (X1= 0 AND X2 = 2 AND X3 = 2) OR (X1= 1 AND X2 = 1 AND 
X3 = 2) OR (X1= 1 AND X2 = 2 AND X3 = 3)  



Product Configuration Problems

l Compatibility constraints on 
product components.
– Often only certain combinations   

of components work together.

l Compatibility may not be a 
simple pairwise relationship.



A Configuration Problem

l Valid hw products are defined in a table of compatible components 
(Products): 

l Assume we have products Pi to configure each with 5 components 
for motherboard, CPU, Freq, RAM and h. drive [Xi1,Xi2,Xi3, Xi4, Xi5].

l For each product Pi, we post table([Xi1,Xi2,Xi3, Xi4, Xi5], Products). 

Products Motherboard CPU Freq RAM Hard drive

Product1 TypeA Intel 2GHz 5GB 100GB

Product2 TypeB Intel 3GHz 8GB 200GB

Product3 TypeB Amd 2GHz 5GB 200GB

…



Crossword Puzzles

l Valid words are defined in a 
table of compatible letters  
(i.e. dictionary).  
– table([X1,X2,X3], dictionary)
– table([X1,X13,X16], dictionary)
– table([X4,X5,X6,X7], dictionary)
– …

l No simple way to decide 
acceptable words other than 
to put them in a table.



l The table constraint requires precomputing 
all the solutions of a constraint.
– May not always be possible or practical.

l We can use a deterministic finite-state 
automaton to define the solutions. 
– Useful especially when valid assignments need to 

obey certain patterns. 

Formal Language-based Constraints



Deterministic Finite State Automaton

l A dfsa is a finite-state machine that accepts or rejects a 
given string of symbols, by running through a state sequence 
uniquely determined by the string.

– Recognizes a regular language. 

l E.g., a dfa that accepts binary numbers that are multiples of 3.

– Some accepted strings: 0, 11, 110, 1100, 1001, 10111101, …
– Not accepted strings: 10, 100, 101, 10100, …



Regular Constraint

l A dfsa A is defined by a 5-tuple (q, sigma, t, q0, f) where:
– q : a finite set of states
– sigma: a set of symbols (i.e. alphabet)
– t: a partial transition function q x sigma à q
– q0 : initial state
– f ⊆ q: accepting (final) states 

l regular([X1, X2, …, Xk], A) holds iff <X1, X2, …, Xk> forms 
a string accepted by a dfsa A. 



Rostering Problems

l Shifts are subject to regulations.
– E.g., successive night shifts must be limited. 

l In a nurse rostering problem, suppose:
– each nurse is scheduled for each day either: (d) 

on day shift, (n) on night shift, or (o) off; 
– in each four day period, a nurse must have at 

least one day off; 
– no nurse can be scheduled for 3 night shifts in a 

row.  



A Nurse Rostering Problem

l q = {q1, …, q6}
l sigma = {d, n, o}
l t: 

l q0 : q1

l f = q = {q1, …, q6}
l Assume nurses Ni to be scheduled for 30 days [Di1,…, Di30].
l For each nurse Ni, we post regular([Di1,…, Di30], A)



Regular Constraint

l Useful in sequencing and rostering problems. 
l Many constraints are instances of regular:

– among, lex, precedence, stretch, …
l Efficient GAC propagation with a dedicated 

algorithm and a  decomposition into a 
sequence of ternary constraints.
– Another example of the power of decompositions!


