Dedicated Propagation Algorithms
S

e Dedicated ad-hoc algorithms provide
effective and efficient propagation.

e Often:

- GAC is maintained in polynomial time;

- many more inconsistent values are detected
compared to the decompositions;

- computation is done incrementally.

A GAC Propagation Algorithm
c-

e Maintains GAC on alldifferent([X4, X,, ..., X{]) and runs
In polynomial time.

— Jean-Charles Régin, “A Filtering Algorithm for Constraints of
Difference in CSPs”, in the Proc. of AAAI'1994

e Establishes a relation between the solutions of the
constraint and the properties of a graph.
- Maximal matching in a bipartite graph.

® A similar algorithm can be obtained with the use of flow
theory.

A GAC Algorithm for alldifferent
c-

e A bipartite graph is a graph whose vertices are divided
Into two disjoint sets U and V such that every edge
connects a vertex in Utoonein V.

A N

A GAC Algorithm for alldifferent

e A matching in a graph is a subset of its edges such that
no two edges have a node in common.
- Maximal matching is the largest possible matching.

e In a bipartite graph, maximal matching covers one set of
nodes.

A GAC Algorithm for alldifferent
c-

e Observation

— Given a bipartite graph G constructed between the variables
[X4, X5, ..., Xi]and their possible values (variable-value graph),
— an assignment of values to the variables is a solution iff it
corresponds to a maximal matching in G.
e A maximal matching covers all the variables.

- By computing all maximal matchings, we can find all the
consistent partial assignments.

Example
c

Variable-value graph

Dy = {1,2} -—-'l‘

D3 = {1,3} @

A Maximal Matching
-

a(zg) =0
a(zy) =1

a(zg) =2

DOOOOE®
ololelo

a(z3z) =3
a(zy) =4 = .-(:)
a(zg) =6 —

Another Maximal Matching

o= @
=2 @
=0 @
=3 @
weo=s @

a(zrg) =6

Matching Notations

..
e Edge

- matching if takes part in a matching;
~ free otherwise.

e Node

- matched if incident to a matching edge;
— free otherwise.

e Vital edge

- belongs to every maximal matching.

Free, Matched, Matching

a(zg) =1

a(xy) =2

a(xz) =3

o)
S
a(xg) =0 @ e
@ e
o)

a(rg) =6

matching

Algorithm
S

e Compute all maximal matchings.
e No maximal matching exists = failure.
e An edge free in all maximal matchings -

- Remove the edge.

- Amounts to removing the corresponding value from the domain of the
corresponding variable.

e A vital edge 2
- Keep the edge.

- Amounts to assigning the corresponding value to the corresponding
variable.

e Edges matching in some but not all maximal matchings =
- Keep the edge.

All Maximal Matchings
S

e Inefficient to compute them naively.

e Use matching theory to compute them efficiently.

- One maximal matching can describe all maximal
matchings!

Alternating Path and Cycle

. 0000000000000
e Alternating path

- Simple path with edges alternating free and matching.
e Alternating cycle

- Cycle with edges alternating free and matching.
e Length of path/cycle

- Number of edges in the path/cycle.

e Even path/cycle
- Path/cycle of even length.

Matching Theory

c-
e A result due to Claude Berge in 1970.

e An edge e belongs to a maximal matching iff
for some arbitrary maximal matching M:
— either e belongs to M,;

- or e belongs to even alternating path starting at a
free node;

- or e belongs to an even alternating cycle.

Oriented Graph
S

e To compute alternating path/cycles, we will
orient edges of an arbitrary maximal matching:
- matching edges - from variable to value;
- free edges - from value to variable.

An Arbitrary Maximal Matching

a(zry) =1
a(zg) =2
a(xz) =3

a(rg) =4

a(zxg) =5

Oriented Graph

i

. . | _. | \
_
\ _ _ _ \ \

Even Alternating Paths
-

e Start from a free node and search for all nodes on
directed simple path.
— Mark all edges on path.
— Alternation built-in.

e Start from a value node.
— Variable nodes are all matched.

e Finish at a value node for even length.

Even Alternating Paths

l
|
|
I
|
|
|
|

 Intuition: edges can be permuted.

Even Alternating Cycles

e Compute strongly connected components (SCCs).

-~ Two nodes a and b are strongly connected iff there is a path
from a to b and a path from b to a.

- Strongly connected component: any two nodes are strongly
connected.

— Alternation and even length built-in.
e Mark all edges in all strongly connected components.

Even Alternating Cycles

* |ntuition: variables consume all the values.

All Marked Edges

oeee@

@@@@@

Removing Edges
-

e Remove the edges which are:

- free (does not occur in our arbitrary maximal matching) and
not marked (does not occur in any maximal matching);

— marked as black in our example.
e Keep the edge matched and not marked.

— Marked as red in our example.
- Vital edge!

Removing Edges

D(Xo) = 10,1}, D(Xy) = (1,2}, D(X3) = {0,2}, D(X5) = {1,3}
D(X,) = {2,3,4,5}, D(X5) = {5,6}

Edges Removed

D(Xo) = {0.1}, D(X;) = {1,2}, D(X,) = {0,2}, D(Xs) = {3}
D(X,) = {£.,4:4.5}, D(Xs) = (5.6}

Summary of the Algorithm
-

Construct the variable-value graph.

Find a maximal matching M; otherwise falil.
Orient graph (done while computing M).

Mark edges starting from free value nodes using
graph search.

Compute SCCs and mark joining edges.
Remove not marked and free edges.

Incremental Properties
S

e Keep the variable and value graph between
different invocations.

e \When re-executed:

remove marks on edges;

remove edges not in the domains of the
respective variables;

If a matching edge is removed, compute a new
maximal matching;

otherwise just repeat marking and removal.

Runtime Complexity

o
e alldifferent([X, Xo, ..., XJ) with m = > |D(X))
e First call -n

— Consistency check in O(vkm) time.

e Matching > O(Wkm)
e Alternating path > O(m)
e SCCs - O(k+m)

- Establishing GAC in O(m) time.

e After q variable domains have been modified
_ Matching in O(min{gm, vk m}) time.
- Establishing GAC in O(m) time.

Dedicated Ad-hoc Algorithms
S

e Is it always easy to develop a dedicated
algorithm for a given constraint?

e A nice semantics often gives us a clue!
— Graph theory
- Flow theory
- Combinatorics
- Automata theory
-~ Dynamic programming
- Complexity theory, ...

Dedicated Ad-hoc Algorithms

c-
e GAC may as well be NP-hard!

- E.g., nvalue, sequence+gcc, gcc using variables
for occurrences.

— Algorithms which maintain weaker consistencies
are of interest.
e BC
e Between GAC and BC
e GAC on some variables, BC on others

Dedicated Ad-hoc Algorithms

<
e What if it is difficult to:

- decompose a constraint;

- build an efficient and effective dedicated
algorithm?

Outline
«{«a__

e Local Consistency
- Generalized Arc Consistency (GAC)
- Bounds Consistency (BC)

e Constraint Propagation
- Propagation Algorithms
e Specialized Propagation

— Global Constraints

e Decompositions
e Ad-hoc Algorithms

e Global Constraints for Generic Purposes

Global Constraints for Generic Purposes
... 0000000

e Help propagate a wide range of constraints.
- Table constraint.
- Formal language-based constraints.

Table (Extensional) Constraint

S
® C(X1a XZ) - {(an)’ (0’2)’ (1 ’3)’ (2’1)}
e Several algorithms exist to maintain GAC.
— More efficient than O(|D(X)[*|D(Xo)[*...*ID(X,)|) -

-~ More effective than the decomposition.

e E.g., (X;=0AND X, =2 AND X5=2) OR (X;= 1 AND X, = 1 AND
X5=2) OR (X;= 1 AND X, = 2 AND X, = 3)

Product Configuration Problems
-

e Compatibility constraints on
product components.

— Often only certain combination
of components work together.

e Compatibility may not be a
simple pairwise relationship.

A Configuration Problem
-

e Valid hw products are defined in a table of compatible components
(Products):

Products Motherboard CPU Freq RAM Hard drive

Product, TypeA Intel 2GHz 5GB 100GB
Product, TypeB Intel 3GHz 8GB 200GB
Products TypeB Amd 2GHz 5GB 200GB

e Assume we have products P; to configure each with 5 components
for motherboard, CPU, Freq, RAM and h. drive [X;1,Xi»,Xi3, Xis, Xiz].

e For each product P;, we post table([Xi{,Xi»,Xi3, Xis, Xi5], Products).

Crossword Puzzles
-

e Valid words are defined in a

-
~
w

-
o
-
-

table of compatible letters ~ |.¢f4 lff”" P el CoH

) o El c| A "“H| 7| ol G "T| U| R| T| L| E

(I.e. dictionary). “sLul 18] Al 1[n] ol Rl /IO R

. oo Ll Al 1| cl A|"B| E| R Fl w| D

- table(_X1,X2,X3], d|Ct|0nary) “|"o| w| LI K|"A| n| e[l s|"H| E| D| |

- T sl wl Al LI"cHR|l Al s|"P 0| W] E| N

— table([X4,X43,X46], dictionary) RN E oy e B e e
— table([X4,X5,X5,X7], dictionary) “s|“s| 1| m “r] Al ™

MS ISF JBP A R ‘7A CQK ‘9E E T 50U 51S 52A

e “c| ™| cl el v| | sSEMs| k| 1| N| s

: : *R| E| 1| A'WEE Al n| E|"WIMTE| R| E| H

e No simple way to decide Ao S "L ol | AN

acceptable words other than "1/ efll™al el sil"e["u «| alN| ul"8|"

i c| rR|"A| T| E| s L| Al el RIEE | u| o

to put them in a table. NEAEN AENE e

Formal Language-based Constraints
-

e [he table constraint requires precomputing
all the solutions of a constraint.

- May not always be possible or practical.
e \We can use a deterministic finite-state
automaton to define the solutions.

- Useful especially when valid assignments need to
obey certain patterns.

Deterministic Finite State Automaton
<]

e A dfsa is a finite-state machine that accepts or rejects a

given string of symbols, by running through a state sequence
uniquely determined by the string.

-~ Recognizes a regular language.

e E.g., a dfa that accepts binary numbers that are multiples of 3.
0 1 0
OJORO
1 0

- Some accepted strings: 0, 11, 110, 1100, 1001, 10111101, ...
- Not accepted strings: 10, 100, 101, 10100, ...

Regular Constraint

c ... 0000
e A dfsa A is defined by a 5-tuple (q, sigma, t, qo, f) where:

- q: afinite set of states
— sigma: a set of symbols (i.e. alphabet)
— t: a partial transition function g x sigma - ¢
— (o Initial state
- f € q: accepting (final) states
e regular([Xy, X,, ..., X], A) holds iff <X;, X,, ..., X,> forms
a string accepted by a dfsa A.

Rostering Problems

e Shifts are subject to regulations.
- E.g., successive night shifts must be limited.

e In a nurse rostering problem, suppose:

- each nurse is scheduled for each day either: (d)
on day shift, (n) on night shift, or (o) off;

— In each four day period, a nurse must have at
least one day off;

— no nurse can be scheduled for 3 night shifts in a
row.

A Nurse Rostering Problem

0 e q={q4, ..., e}
e sigma ={d, n, o}
o {t:

{d,n} {d,n}

Va4

\\@f
® (o- (4
o f=q={qy, ..., ¢}

e Assume nurses N; to be scheduled for 30 days [D;q,..., Di3].
e For each nurse N;, we post regular([D;y,..., Diso], A)

o o [+ 8 H H N [«
o o o wn H w =]
[N [N [N [N [N [N o

o wn H w N -

Regular Constraint
S

e Useful in sequencing and rostering problems.

e Many constraints are instances of regular:
- among, lex, precedence, stretch, ...

e Efficient GAC propagation with a dedicated
algorithm and a decomposition into a
sequence of ternary constraints.

- Another example of the power of decompositions!

