Global Constraints

- Capture complex, non-binary and recurring combinatorial substructures arising in a variety of applications.
- Embed specialized propagation which exploits the substructure.

Benefits of Global Constraints

• Modelling benefits

- Reduce the gap between the problem statement and the model.
- May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).
- Solving benefits
	- Strong inference in propagation (operational).
	- Efficient propagation (algorithmic).

Some Groups of Global Constraints

- Counting
- **.** Sequencing
- Scheduling
- Ordering
- Balancing
- Distance
- Packing

l …

• Graph-based

Counting Constraints

• Restrict the number of variables satisfying a condition or the number of times values are taken.

Alldifferent Constraint

- alldifferent($[X_1, X_2, ..., X_k]$) iff $X_i \neq X_i$ for $i < j \in \{1, ..., k\}$
	- permutation constraint with $|D(X_i)| = k$.
	- alldifferent([3,5,2,1,4])
- Useful in a variety of context, like:
	- puzzles (e.g., sudoku and n-queens);
	- timetabling (e.g. allocation of activities to different slots);
	- scheduling (e.g. a team can play at most once in a week);
	- configuration (e.g. a particular product cannot have repeating components).

Nvalue Constraint

- Constrains the number of distinct values assigned to the variables.
- Nvalue($[X_1, X_2, ..., X_k]$, N) iff $N = |\{X_i | 1 \le i \le k\}|$
	- Nvalue([1, 2, 2, 1, 3], 3).
	- $-$ alldifferent when $N = k$.
- Useful e.g. in:
	- resource allocation (e.g. limit the number of resource types).

Global Cardinality Constraint

- Constrains the number of times each value is taken by the variables.
- α gcc($[X_1, X_2, ..., X_k]$, $[v_1, ..., v_m]$, $[O_1, ..., O_m]$) iff forall $j \in \{1, ..., m\}$ $O_j = |\{X_i | X_i = v_j, 1 \le i \le k\}|$
	- $-$ gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
	- alldifferent when $O_i \leq 1$.
- Useful e.g. in:
	- resource allocation (e.g. limit the usage of each resource).

Among Constraint

- Constrains the number of variables taken from a given set of values.
- among($[X_1, X_2, ..., X_k]$, s, N) iff $N = |\{i \mid X_i \in S, 1 \le i \le k \}|$

 $-$ among([1, 5, 3, 2, 5, 4], {1, 2, 3, 4}, 4)

• among($[X_1, X_2, ..., X_k]$, s, l, u) iff $|S| \leq |S| | X_i \in S, 1 \leq i \leq k | S \leq u$

 $-$ among([1, 5, 3, 2, 5, 4], {1, 2, 3, 4}, 3, 4)

• Useful in sequencing problems, as we see next.

Sequencing Constraints

• Ensure a sequence of variables obey certain patterns.

Sequence/AmongSeq Constraint

- Constrains the number of values taken from a given set in any subsequence of q variables.
- sequence(l, u, q, $[X_1, X_2, ..., X_k]$, s) iff among([X_i, X_{i+1}, …, X_{i+q-1}], s, l, u) for $1 \le i \le k$ -q+1 $-$ sequence(1,2,3,[1,0,2,0,3],{0,1})
- Useful e.g. in:
	- rostering (e.g. every employee has 2 days off in any 7 day of period);
	- production line (e.g. at most 1 in 3 cars along the production line can have a sun-roof fitted).

Scheduling Constraints

• Help schedule tasks with respective release times, duration, and deadlines, using limited resources in a time interval.

Disjunctive Resource Constraint

- Requires that tasks do not overlap in time. – Known also as noOverlap constraint.
- Given tasks t_1, \ldots, t_k , each associated with a start time S_i and duration D_i :

disjunctive($[S_1, ..., S_k]$, $[D_1, ..., D_k]$) iff for all $i < j$ $(S_i + D_i \leq S_i)$ \vee $(S_i + D_i \leq S_i)$

• Useful when a resource can execute at most one $\frac{1}{1}$ task at a time.

Cumulative Resource Constraint

- Constrains the usage of a shared resource.
- Given tasks t_1, \ldots, t_k , each associated with a start time S_i , duration D_i , resource requirement R_i , and a resource with a capacity C:

cumulative([S₁, ..., S_k], [D₁, ..., D_k], [R₁, ..., R_k], C) iff $\sum_{i|S_i \le u < S_i + D_i} R_i \le C$ forall u in D

• Useful when a resource with a capacity can execute multiple tasks at a time.

Ordering Constraints

• Enforce an ordering between the variables or the values.

Lexicographic Ordering Constraint

- Requires a sequence of variables to be lexicographically less than or equal to another sequence of variables.
- $lexS([X_1, X_2, ..., X_k]$, $[Y_1, Y_2, ..., Y_k])$ holds iff: $X_1 \leq Y_1 \wedge$ $(X_1 = Y_1 \rightarrow X_2 \le Y_2) \wedge$ $(X_1 = Y_1 \wedge X_2 = Y_2 \rightarrow X_3 \leq Y_3)$... $(X_1 = Y_1 \wedge X_2 = Y_2 \dots X_{k-1} = Y_{k-1} \rightarrow X_k \le Y_k)$ – lex≤([1, 2, 4],[1, 3, 3])
- Useful in symmetry breaking.
	- Avoid permutations of (groups of) variables.

Permutation of Variables

• lex≤([X₁, X₂, …, X_k], π([X₁, X₂, …, X_k])) for some π.

• E.g., with n-Queens:

```
constraint
```

```
lex lesseq(array1d(qb), [ qb[i, i] | i, j in 1, n ])
\wedge lex_lesseq(array1d(qb), [ qb[i,j] | i in reverse(1..n), j in 1..n ])
\wedge lex_lesseq(array1d(qb), [ qb[j,i] | i in 1..n, j in reverse(1..n) ])
\wedge lex_lesseq(array1d(qb), [ qb[i,j] | i in 1..n, j in reverse(1..n) ])
\wedge lex_lesseq(array1d(qb), [ qb[j,i] | i in reverse(1..n), j in 1..n ])
\wedge lex lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ])
  lex_lesseq(array1d(qb), [ qb[j,i] | i,j                                 in reverse(1..n) ])
\sqrt{}
```
• Assignments of items to two identical bins can be represented by a matrix of Boolean variables:

- i_1 i_2 i_3 i_4 i_5 i_6 X 1 0 1 0 1 0
	- Y 0 1 0 1 0 1
	- i_1 i_2 i_3 i_4 i_5 i_6 X 0 1 0 1 0 1 Y 1 0 1 0 1 0

• Need to avoid the symmetric assignments.

i_1	i_2	i_3	i_4	i_5	j_8	
X	1	0	1	0	1	0
Y	0	1	0	1	0	1

 \bullet lex \leq (X, Y) .

i_1	i_2	i_3	i_4	i_5	i_8	
X	1	0	1	0	1	0
Y	0	1	0	1	0	1

• Need to avoid the symmetric assignments.

• lex \leq (i₃, i₄).

Value Precedence Constraint

- Requires a value to precede another value in a sequence of variables.
- value_precede(v_{i1} , v_{i2} , $[X_1, X_2, ..., X_k]$) holds iff:
	- $-$ min{ i | $X_i = v_{i1}$ \vee i = k+1} < min{ i | $X_i = v_{i2}$ \vee i = k + 2}.
	- $-$ value precede(5, 4, [2, 5, 3, 5, 4])
- Useful in symmetry breaking.
	- Avoid permutations of values.

Specialized Propagation for Global Constraints

- How do we develop specialized propagation for global constraints?
- Two main approaches:
	- constraint decomposition;
	- dedicated ad-hoc algorithm.

Constraint Decomposition

- A global constraint is decomposed into smaller and simpler constraints, each of which has a known propagation algorithm.
- Propagating each of the constraints gives a propagation algorithm for the original global constraint.
	- A very effective and efficient method for some global constraints.

A Decomposition of Among

- among($[X_1, X_2, ..., X_k]$, s, N)
- Decomposition as a conjunction of logical constrains and a sum constraint.
	- $-$ B_i with D(B_i) = {0, 1} for 1 ≤ i ≤ k
	- $-$ C_i: B_i = 1 ↔ $X_i \in s$ for 1 ≤ i ≤ k
	- $-$ **C**_{k+1}: $\sum_{i} B_i = N$
- $AC(C_i)$ for all i and $BC(\sum_i B_i = N)$ ensures GAC on among.

A Decomposition of Lex

- $lex \leq (X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])$
- Decomposition as a conjunction of disjunctions.
	- B_i with $D(B_i) = \{0, 1\}$ for $1 \le i \le k+1$ to indicate the vectors have been ordered by position i-1.
	- $B_1 = 0$
	- C_i : $(B_i = B_{i+1} = 0$ AND $X_i = Y_i$) OR $(B_i = 0$ AND $B_{i+1} = 1$ AND $X_i < Y_i$) OR (B_i = B_{i+1} = 1) for $1 \le i \le k$
- \bullet GAC(C_i) for all i ensures GAC on lex \leq .

Constraint Decompositions

- May not always provide an effective propagation.
- Often GAC on the original constraint is stronger than (G)AC on the constraints in the decomposition.

A Decomposition of Alldifferent

- alldifferent($[X_1, X_2, ..., X_k]$)
- Decomposition as a conjunction of difference constraints.
	- C_{ii} : $X_i \neq X_i$ for $i < j \in \{1,...,k\}$
- $AC(C_{ii})$ for all $i < j$ is weaker than GAC on alldifferent.
	- E.g., alldifferent($[X_1, X_2, X_3]$) with $D(X_1) = D(X_2) =$ $D(X_3) = \{1, 2\}.$
	- alldifferent is not GAC but the decomposition does not prune anything.

A Decomposition of Sequence

- sequence(l, u, q, $[X_1, X_2, ..., X_k], s$)
- Decomposition as a conjunction of among constraints.
	- $-$ C_i: among([X_i, X_{i+1}, …, X_{i+q-1}], s, l, u) for 1 ≤ i ≤ k-q+1
- \bullet GAC(C_i) for all i is weaker than GAC on sequence.
	- $-$ E.g., sequence(2, 3, 5, $[X_1, X_2, ..., X_7]$, {1}) with $X_1 = X_2 = 1$, $X_6 = 0$, $D(X_i) = \{0, 1\}$ for $i \in \{3, 4, 5, 7\}$.
	- sequence is not GAC but the decomposition does not prune anything.

A Decomposition of Sequence

- 1 1 $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $q=5$, $l=2$, $u=3$, $v=\{1\}$
- \bullet |1 1 {0,1} {0,1} {0,1} |0 {0,1} GAC(among)
	-
	-
- 1 $1 \{0,1\} \{0,1\} \{0,1\}$ 0 $\{0,1\}$ GAC(among)
	-
- 1 1 $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ 0 $\{0,1\}$ GAC(among)
	-

A Decomposition of Sequence

- 1 1 $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $q=5$, $l=2$, $u=3$, $v=\{1\}$
- \bullet |1 1 {0,1} {0,1} {0,1} |0 {0,1} GAC(among)
-
-
- 1 $1 \{0,1\} \{0,1\} \{0,1\}$ 0 $\{0,1\}$ GAC(among)
	-
- 1 1 $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ 0 $\{0,1\}$ GAC(among)
	-

A Decomposition of Lex

- lex $\leq (X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])$
- Decomposition as a conjunction of implications
	- $-X_1 \leq Y_1$ AND $(X_1 = Y_1 \rightarrow X_2 \leq Y_2)$ AND ...

 $(X_1 = Y_1 \text{ AND } X_2 = Y_2 \text{ AND } \dots X_{k-1} = Y_{k-1} \rightarrow X_k \le Y_k)$

- AC on the decomposition is weaker than GAC on lex≤.
	- E.g., lex ≤([X₁, X₂], [Y₁, Y₂]) with D(X₁) = {0,1}, X₂ = 1, $D(Y_1) = \{0, 1\}, Y_2 = 0$
	- lex ≤ is not GAC but the decomposition does not prune anything.

Decomposition vs Ad-hoc Algorithm

- Even if a decomposition is effective, may not always provide an efficient propagation.
- Often propagating a constraint via an ad-hoc algorithm is faster than propagating the (many) constraints in the decomposition.
	- Thanks to incremental computation!

Incremental Computation

- A propagation algorithm is often called multiple times.
	- We don't want to re-compute everything each time.
- Incremental computation can improve efficiency.
	- At the first call, some partial results are cached.
	- At the next invoke, we exploit the cached data.
- This requires access to more details about propagation:
	- which variable has been pruned?
	- which values have been pruned?

Dedicated BC Algorithm for Sum

• C: $\sum_i X_i = N$ where X_i and N are integer variables.

$$
-
$$
 min(N) $\geq \sum_i \min(X_i)$

$$
- \max(N) \leq \sum_{i} \max(X_i)
$$

$$
\text{min}(X_i) \ge \min(N) - \sum_{j \ne i} \max(X_j) \text{ for } 1 \le i \le n
$$

$$
- \max(X_i) \le \max(N) - \sum_{j \ne i} \min(X_j) \text{ for } 1 \le i \le n
$$

BC Decomposition for Sum

• C: $\sum_i X_i = N$ where X_i and N are integer variables.

$$
- X_1 + X_2 = Y_1
$$

$$
- Y_1 + X_3 = Y_2
$$

$$
-\ldots
$$

$$
-Y_{(n-1)}+X_n=N
$$

Filtering min(N)

- C: $\sum_i X_i = N$ where X_i and N are integer variables.
	- $-$ min(X₁) + min(X₂) \leq min(Y₁)
	- $-$ min(Y₁) + min(X₃) \leq min(Y₂)
	- ...
	- min(Y_(n-1)) + min(X_n) ≤ min(N)

which is equivalent to $\sum_i \min(X_i) \leq \min(N)$

Number of Operations

- C: $\sum_i X_i = N$ where X_i and N are integer variables.
	- min(X₁) + min(X₂) ≤ min(Y₁)
	- $-$ min(Y₁) + min(X₃) \leq min(Y₂)
	- ...
	- min(Y_(n-1)) + min(X_n) ≤ min(N)

Read access: 2(n-1) Write access: n-1 Sum: n-1

 $\sum_i \min(X_i) \leq \min(N)$

Read access: n Write access: 1 Sum: n-1

Number of Operations

- C: $\sum_i X_i = N$ where X_i and N are integer variables.
	- max(X_1) + max(X_2) ≥ max(Y_1)
	- max(Y_1) + max(X_3) ≥ max(Y_2)
	- max(Y_(n-1)) + max(X_n) ≥ max(N)

– ...

Read access: 2(n-1) Write access: n-1 Sum: n-1

 $\sum_i \max(X_i) \geq \max(N)$

Read access: n Write access: 1 Sum: n-1

Incremental Computation

• C: $\sum_i X_i = N$ where X_i and N are integer variables.

 $-$ max(N) ≤ $\sum_i \max(X_i)$

- Cache max (N) as max (N)
- Whenever the bounds of a variable X_i is pruned:
	- $-$ max(N) \le max $\$(N)$ (old(max(X_i)) max(X_i)) $O(1)$

Incremental Computation

- C: $\sum_i X_i = N$ where X_i and N are integer variables.
	- Complexity reduces to $O(1)$ from $O(n)$

Classical Sum Read access: n Write access: 1 Sum: n-1

Incremental Sum Read access: 3 **Example 20 Write access: 1** Sum: 2

Dedicated Propagation Algorithms

- Dedicated ad-hoc algorithms provide effective and efficient propagation.
- Often:
	- GAC is maintained in polynomial time;
	- many more inconsistent values are detected compared to the decompositions;
	- computation is done incrementally.