
Global Constraints

l Capture complex, non-binary and recurring
combinatorial substructures arising in a
variety of applications.

l Embed specialized propagation which
exploits the substructure.

Benefits of Global Constraints

l Modelling benefits
– Reduce the gap between the problem statement

and the model.
– May allow the expression of constraints that are

otherwise not possible to state using primitive
constraints (semantic).

l Solving benefits
– Strong inference in propagation (operational).
– Efficient propagation (algorithmic).

Some Groups of Global Constraints

l Counting
l Sequencing
l Scheduling
l Ordering
l Balancing
l Distance
l Packing
l Graph-based
l …

Counting Constraints

l Restrict the number of variables satisfying a
condition or the number of times values are
taken.

Alldifferent Constraint

l alldifferent([X1, X2, …, Xk]) iff
Xi ≠ Xj for i < j ∈ {1,…,k}

– permutation constraint with |D(Xi)| = k.
– alldifferent([3,5,2,1,4])

l Useful in a variety of context, like:
– puzzles (e.g., sudoku and n-queens);
– timetabling (e.g. allocation of activities to different

slots);
– scheduling (e.g. a team can play at most once in a

week);
– configuration (e.g. a particular product cannot have

repeating components).

Nvalue Constraint

l Constrains the number of distinct values
assigned to the variables.

l Nvalue([X1, X2, …, Xk], N) iff N = |{Xi | 1 ≤ i ≤ k }|
– Nvalue([1, 2, 2, 1, 3], 3).
– alldifferent when N = k.

l Useful e.g. in:
– resource allocation (e.g. limit the number of resource

types).

Global Cardinality Constraint

l Constrains the number of times each value is
taken by the variables.

l gcc([X1, X2, …, Xk], [v1, …, vm], [O1, …, Om]) iff
forall j ∈ {1,…, m} Oj = |{Xi | Xi = vj, 1 ≤ i ≤ k }|

– gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
– alldifferent when Oj ≤ 1.

l Useful e.g. in:
– resource allocation (e.g. limit the usage of each

resource).

Among Constraint

l Constrains the number of variables taken
from a given set of values.

l among([X1, X2, …, Xk], s, N) iff
N = |{i | Xi ∈ s, 1 ≤ i ≤ k }|

– among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 4)
l among([X1, X2, …, Xk], s, l, u) iff

l ≤ |{i | Xi ∈ s, 1 ≤ i ≤ k }| ≤ u
– among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 3, 4)

l Useful in sequencing problems, as we see next.

Sequencing Constraints

l Ensure a sequence of variables obey certain
patterns.

Sequence/AmongSeq Constraint

l Constrains the number of values taken from a
given set in any subsequence of q variables.

l sequence(l, u, q, [X1, X2, …, Xk], s) iff
among([Xi, Xi+1, …, Xi+q-1], s, l, u) for 1 ≤ i ≤ k-q+1
– sequence(1,2,3,[1,0,2,0,3],{0,1})

l Useful e.g. in:
– rostering (e.g. every employee has 2 days off in any 7

day of period);
– production line (e.g. at most 1 in 3 cars along the

production line can have a sun-roof fitted).

Scheduling Constraints

l Help schedule tasks with respective release
times, duration, and deadlines, using limited
resources in a time interval.

Disjunctive Resource Constraint

l Requires that tasks do not overlap in time.
– Known also as noOverlap constraint.

l Given tasks t1, …, tk, each associated with a
start time Si and duration Di:

disjunctive([S1, …, Sk],[D1, …, Dk]) iff for all i < j
(Si + Di ≤ Sj) ⋁ (Sj + Dj ≤ Si)

l Useful when a resource
can execute at most one
task at a time.

Cumulative Resource Constraint

l Useful when a resource with
a capacity can execute
multiple tasks at a time.

Ordering Constraints

l Enforce an ordering between the variables or
the values.

Lexicographic Ordering Constraint

l Requires a sequence of variables to be lexicographically
less than or equal to another sequence of variables.

l lex≤([X1, X2, …, Xk] , [Y1, Y2, …, Yk]) holds iff:
X1 ≤ Y1 ∧
(X1 = Y1 à X2 ≤ Y2) ∧
(X1 = Y1 ∧ X2 = Y2 à X3 ≤ Y3) …
(X1 = Y1 ∧ X2 = Y2 …. Xk-1 = Yk-1 à Xk ≤ Yk)
– lex≤([1, 2, 4],[1, 3, 3])

l Useful in symmetry breaking.
– Avoid permutations of (groups of) variables.

Permutation of Variables

l lex≤([X1, X2, …, Xk] , π([X1, X2, …, Xk])) for some
π.

l E.g., with n-Queens:

Permutation of Two Sequences of
Variables

l Assignments of items to two identical bins can be
represented by a matrix of Boolean variables:

1
3
5

2

6
4a)

b)

X Y

1
3
5

2

6
4

X Y

i1 i2 i3 i4 i5 i6
X 1 0 1 0 1 0

Y 0 1 0 1 0 1

i1 i2 i3 i4 i5 i6

X 0 1 0 1 0 1

Y 1 0 1 0 1 0

Permutation of Two Sequences of
Variables

l Need to avoid the symmetric assignments.

1
3
5

2

6
4a)

b)

X Y

1
3
5

2

6
4

X Y

i1 i2 i3 i4 i5 i6
X 1 0 1 0 1 0

Y 0 1 0 1 0 1

i1 i2 i3 i4 i5 i6

X 0 1 0 1 0 1

Y 1 0 1 0 1 0

l lex ≤(X , Y).

1
3
5

2

6
4a)

b)

X Y

1
3
5

2

6
4

X Y

Permutation of Two Sequences of
Variables

i1 i2 i3 i4 i5 i6
X 1 0 1 0 1 0

Y 0 1 0 1 0 1

i1 i2 i3 i4 i5 i6

X 0 1 0 1 0 1

Y 1 0 1 0 1 0

b)
1
3
5

2

6
4

X Y

i1 i2 i3 i4 i5 i6
X 0 1 0 1 0 1

Y 1 0 1 0 1 0

Permutation of Two Sequences of
Variables

l Need to avoid the symmetric assignments.

c)
1
4
5

2

6
3

X Y

i1 i2 i3 i4 i5 i6
X 0 1 1 0 0 1

Y 1 0 0 1 1 0

b)
1
3
5

2

6
4

X Y

Permutation of Two Sequences of
Variables

l lex ≤(i3, i4).

c)
1
4
5

2

6
3

X Y

i1 i2 i3 i4 i5 i6
X 0 1 0 1 0 1

Y 1 0 1 0 1 0

i1 i2 i3 i4 i5 i6
X 0 1 1 0 0 1

Y 1 0 0 1 1 0

Value Precedence Constraint

l Requires a value to precede another value in a sequence
of variables.

l value_precede(vj1, vj2, [X1, X2, …, Xk]) holds iff:
– min{ i | Xi = vj1 ∨ i = k+1} < min{ i | Xi = vj2 ∨ i = k + 2}.
– value_precede(5, 4, [2, 5, 3, 5, 4])

l Useful in symmetry breaking.
– Avoid permutations of values.

Specialized Propagation for Global
Constraints

l How do we develop specialized propagation
for global constraints?

l Two main approaches:
– constraint decomposition;
– dedicated ad-hoc algorithm.

Constraint Decomposition

l A global constraint is decomposed into smaller
and simpler constraints, each of which has a
known propagation algorithm.

l Propagating each of the constraints gives a
propagation algorithm for the original global
constraint.
– A very effective and efficient method for some global

constraints.

A Decomposition of Among

l among([X1, X2, …, Xk], s, N)
l Decomposition as a conjunction of logical

constrains and a sum constraint.
– Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ k
– Ci: Bi = 1 ↔ Xi ∈ s for 1 ≤ i ≤ k
– Ck+1:

l AC(Ci) for all i and BC() ensures GAC on
among.
€

Bi = N
i∑

€

Bi = N
i∑

A Decomposition of Lex

l lex ≤([X1, X2, …, Xk], [Y1, Y2, …, Yk])
l Decomposition as a conjunction of disjunctions.

- Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ k+1 to indicate the
vectors have been ordered by position i-1.

- B1= 0
- Ci: (Bi = Bi+1 = 0 AND Xi = Yi) OR (Bi = 0 AND Bi+1 = 1

AND Xi < Yi) OR (Bi = Bi+1 = 1) for 1 ≤ i ≤ k
l GAC(Ci) for all i ensures GAC on lex ≤.

Constraint Decompositions

l May not always provide an effective propagation.
l Often GAC on the original constraint is stronger than

(G)AC on the constraints in the decomposition.

A Decomposition of Alldifferent

l alldifferent([X1, X2, …, Xk])
l Decomposition as a conjunction of difference

constraints.
– Cij: Xi ≠ Xj for i < j ∈ {1,…,k}

l AC(Cij) for all i < j is weaker than GAC on
alldifferent.
– E.g., alldifferent([X1, X2, X3]) with D(X1) = D(X2) =

D(X3) = {1,2}.
– alldifferent is not GAC but the decomposition does

not prune anything.

A Decomposition of Sequence

l sequence(l, u, q, [X1, X2, …, Xk], s)
l Decomposition as a conjunction of among

constraints.
– Ci: among([Xi, Xi+1, …, Xi+q-1], s, l, u) for 1 ≤ i ≤ k-q+1

l GAC(Ci) for all i is weaker than GAC on
sequence.
– E.g., sequence(2, 3, 5, [X1, X2, …, X7], {1}) with

X1 = X2 = 1, X6 = 0, D(Xi) = {0,1} for i ∊ {3,4,5,7}.
– sequence is not GAC but the decomposition does

not prune anything.

A Decomposition of Sequence

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} q=5, l =2, u =3,v={1}

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

A Decomposition of Sequence

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} q=5, l =2, u =3,v={1}

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

l 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

A Decomposition of Lex

l lex ≤([X1, X2, …, Xk], [Y1, Y2, …, Yk])
l Decomposition as a conjunction of implications

- X1 ≤ Y1 AND (X1 = Y1 → X2 ≤ Y2) AND …

(X1 = Y1 AND X2 = Y2 AND …. Xk-1 = Yk-1 → Xk ≤ Yk)
l AC on the decomposition is weaker than GAC on lex≤.

- E.g., lex ≤([X1, X2], [Y1, Y2]) with D(X1) = {0,1}, X2 = 1,
D(Y1) = {0,1}, Y2 = 0

- lex ≤ is not GAC but the decomposition does not prune anything.

Decomposition vs Ad-hoc Algorithm

l Even if a decomposition is effective, may not always
provide an efficient propagation.

l Often propagating a constraint via an ad-hoc algorithm
is faster than propagating the (many) constraints in the
decomposition.
– Thanks to incremental computation!

Incremental Computation

l A propagation algorithm is often called multiple times.
– We don’t want to re-compute everything each time.

l Incremental computation can improve efficiency.
– At the first call, some partial results are cached.
– At the next invoke, we exploit the cached data.

l This requires access to more details about
propagation:
– which variable has been pruned?
– which values have been pruned?

Dedicated BC Algorithm for Sum

l C: where Xi and N are integer variables.

– min(N) ≥
– max(N) ≤
– min(Xi) ≥ min(N) - for 1 ≤ i ≤ n
– max(Xi) ≤ max(N) - for 1 ≤ i ≤ n

Xi = Ni∑

min(Xi)i∑
max(Xi)i∑

max(Xj)j≠i∑
min(Xj)j≠i∑

BC Decomposition for Sum

l C: where Xi and N are integer variables.

– X1 + X2 = Y1

– Y1 + X3 = Y2

– ...
– Y(n-1)+Xn = N

Xi = Ni∑

Filtering min(N)

l C: where Xi and N are integer variables.

– min(X1) + min(X2) ≤ min(Y1)
– min(Y1) + min(X3) ≤ min(Y2)
– ...
– min(Y(n-1)) + min(Xn) ≤ min(N)

which is equivalent to
≤ min(N)

Xi = Ni∑

min(Xi)i∑

Number of Operations

l C: where Xi and N are integer variables.

– min(X1) + min(X2) ≤ min(Y1)
– min(Y1) + min(X3) ≤ min(Y2)
– ...
– min(Y(n-1)) + min(Xn) ≤ min(N)

≤ min(N)

Xi = Ni∑

min(Xi)i∑

Read access: 2(n-1)
Write access: n-1
Sum: n-1

Read access: n
Write access: 1
Sum: n-1

Number of Operations

l C: where Xi and N are integer variables.

– max(X1) + max(X2) ≥ max(Y1)
– max(Y1) + max(X3) ≥ max(Y2)
– ...
– max(Y(n-1)) + max(Xn) ≥ max(N)

≥ max(N)

Xi = Ni∑

max(Xi)i∑

Read access: 2(n-1)
Write access: n-1
Sum: n-1

Read access: n
Write access: 1
Sum: n-1

Incremental Computation

l C: where Xi and N are integer variables.

– max(N) ≤
l Cache max(N) as max$(N)
l Whenever the bounds of a variable Xi is pruned:

– max(N) ≤ max$(N) – (old(max(Xi)) - max(Xi))

Xi = Ni∑

max(Xi)i∑

O(1)

Incremental Computation

l C: where Xi and N are integer variables.

– Complexity reduces to O(1) from O(n)

Xi = Ni∑

Classical Sum
Read access: n
Write access: 1
Sum: n-1

Incremental Sum
Read access: 3
Write access: 1
Sum: 2

Dedicated Propagation Algorithms

l Dedicated ad-hoc algorithms provide
effective and efficient propagation.

l Often:
– GAC is maintained in polynomial time;
– many more inconsistent values are detected

compared to the decompositions;
– computation is done incrementally.

