Global Constraints
<]

e Capture complex, non-binary and recurring
combinatorial substructures arising in a
variety of applications.

e Embed specialized propagation which
exploits the substructure.

Benefits of Global Constraints
<]

e Modelling benefits

- Reduce the gap between the problem statement
and the model.

- May allow the expression of constraints that are
otherwise not possible to state using primitive
constraints (semantic).

e Solving benefits
— Strong inference in propagation (operational).
- Efficient propagation (algorithmic).

Some Groups of Global Constraints

0
Counting

Sequencing
Scheduling
Ordering
Balancing
Distance
Packing
Graph-based

Counting Constraints
-

e Restrict the number of variables satisfying a
condition or the number of times values are
taken.

Alldifferent Constraint

..
e alldifferent([X4, X,, ..., X/]) iff

Xi#X; fori<je{1,..k}
permutation constraint with [D(X))| = k.
alldifferent([3,5,2,1,4])

e Useful in a variety of context, like:

puzzles (e.g., sudoku and n-queens);

tilmet)abling (e.g. allocation of activities to different
slots);

scheduling (e.g. a team can play at most once in a
week);

configuration (e.g. a particular product cannot have
repeating components).

Nvalue Constraint
<]

e Constrains the number of distinct values
assigned to the variables.

o Nvalue([Xs, X, ..., X, N)iff N=[{X |[1<i<k}|
- Nvalue([1, 2, 2, 1, 3], 3).
— alldifferent when N = k.

e Useful e.g. In:

- resource allocation (e.g. limit the number of resource
types).

Global Cardinality Constraint
-

e Constrains the number of times each value is
taken by the variables.
® gCC([X1, X2, ey Xk], [V1, ey Vm], [01, ey Om]) |ff
forall j € {1,..., m} O =|{Xi[|Xi=v, 1sisk}
- gce([1,1,3,2,3],[1, 2, 3,4],[2, 1, 2,0])
- alldifferent when O; < 1.
e Useful e.g. In:

- resource allocation (e.g. limit the usage of each
resource).

Among Constraint
-

e Constrains the number of variables taken
from a given set of values.

e among([X4, Xy, ..., Xi], S, N) Iff
N=[i|Xies,1<i<k}
- among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 4)
e among([Xq, Xo, ..., X{], s, |, u) iff
Is{i| Xie€s,1T<i<k}|=su
- among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 3, 4)
e Useful in sequencing problems, as we see next.

Sequencing Constraints
-

e Ensure a sequence of variables obey certain
patterns.

Sequence/AmongSeq Constraint
-

e Constrains the number of values taken from a
given set in any subsequence of q variables.

e sequence(l, u, q, [Xq, Xo, ..., X], s) Iff
among([Xi, Xi+1, ..., Xisg1], S, I, u) for 1 <i<k-q+1
- sequence(1,2,3,[1,0,2,0,3],{0,1})

e Useful e.g. In:

- rostering (e.g. every employee has 2 days off in any 7
day of period);

- production line (e.g. at most 1 in 3 cars along the
production line can have a sun-roof fitted).

Scheduling Constraints
-

e Help schedule tasks with respective release
times, duration, and deadlines, using limited
resources in a time interval.

Disjunctive Resource Constraint

e Requires that tasks do not overlap in time.
- Known also as noOverlap constraint.

., t, each associated with a

e Given tasks t4, ..

start time S; and duration D;:
disjunctive([Sy, ..., S¢],[D1, ..., Dy]) iff for all i <]

(Si+ D=5)V (S+D;=S)

e Useful when a resource -

can execute at most one
task at a time.

1

|

|

4

|

3

I

12 23 4 5 6 7 8 9 10

time

Cumulative Resource Constraint
-

e Constrains the usage of a shared resource.

e Given tasks tq, ...,t;, each associated with a start
time S, duration D,, resource requirement R, and a
resource with a capacity C:

cumulative([S4, ..., Sil, [Py, ..., Dd, [R4, ..., Ry, C) iff
Lils <u<s+p, Ri < Cforalluin D
A
e Useful when a resource with =[7 0 papii
a capacity can execute b
multiple tasks at a time. S

Ordering Constraints
-

e Enforce an ordering between the variables or
the values.

Lexicographic Ordering Constraint
-

e Requires a sequence of variables to be lexicographically
less than or equal to another sequence of variables.

o lexs([Xq, Xy, ..., X, [Y1, Yo, ..., Y]) holds iff:
X; <Y, A
Xi=Ys 2 X, 2Y5) A
Xi=Y4 A Xo=Yy 2 X32Y3) ...
Xi=Ys A Xo=Ys ot X1 =Y 2 X <Y
- lex<([1, 2, 41,11, 3, 3])
e Useful in symmetry breaking.
- Avoid permutations of (groups of) variables.

Permutation of Variables

c-
o IeXS([X1, X2, ey Xk] ; -|T([X1, X2, ey Xk])) for some

TT.
e E.g., with n-Queens:
constraint
lex_lesseq(arrayld(qb), [gb[j,i] | i,j in 1..n 1)
/\ lex_lesseq(arrayld(gb), [gqb[i,j] | i in reverse(1l..n), j in 1.
/\ lex_lesseq(arrayld(gb), [qb[j,i] | 1 in 1..n, j in reverse(1l..

.n 1)
n) 1)
n) 1)
.n 1)

/\ lex_lesseq(arrayld(qgb),
/\ lex_lesseq(arrayld(qgb), [qb[j,i] | i in reverse(1l..n), j in 1.
/\ lex_lesseq(arrayld(qgb), [gqb[i,j] | i,j in reverse(1l..n)])

Lo B cns B s B s B s B s B oy |

|
|
qb[i,j] | 1 in 1..n, j in reverse(1l..
|
|
|

/\ lex_lesseq(arrayld(gb), [gqb[j,i] | i,j in reverse(1l..n)])

’

Permutation of Two Sequences of

Variables

e Assignments of items to two identical bins can be
represented by a matrix of Boolean variables:

a)

b)

|2 wlo

< | 5]~ [

iy ds s i g
X 101010
Y 01010 1

PR PO O J
X 01010 1
Y 101010

Permutation of Two Sequences of

Variables

e Need to avoid the symmetric assignments.

b)

5
3 4
X Y

5
3

1
X Y

iy is g e

1 0 0
101 0 1

PR PO O J
o1 010 1
1 01 01 O

Permutation of Two Sequences of
Variables

e«
o lex <(X,Y).

T PR P VI P
a) 4 X 10 1 0
Y 1010 1

i1 iy i3 iy 5 g
X 01010 1
Y 101010

W |01

<
<

b)

B
< |[=wlon

<

Permutation of Two Sequences of
Variables

e Need to avoid the symmetric assignments.

iy iy iy g 5 g
b) g X 01010 f1
1 Y 101010
X Y
iy iy i3 g g |
X 0 1 0 1

Y 00110

Permutation of Two Sequences of
Variables

o lex <(is, iy).

b) 3 X 01010 1
1
Y

Y 101010

iy Iy I3 g 15 |
X 0 1 0 1
Y 00110

Value Precedence Constraint
<]

e Requires a value to precede another value in a sequence
of variables.

e value_precede(vj;, Vi, [Xq, Xy, ..., X{]) holds iff:
-min{i|Xj=vy Vi=k+1}<min{i| Xj=vpVi=k+2}.
- value precede(5, 4, [2, 5, 3, 5, 4])

e Useful in symmetry breaking.
- Avoid permutations of values.

Specialized Propagation for Global
Constraints

e How do we develop specialized propagation
for global constraints?
e [woO main approaches:

- constraint decomposition;
— dedicated ad-hoc algorithm.

Constraint Decomposition

e A global constraint is decomposed into smaller
and simpler constraints, each of which has a
known propagation algorithm.

e Propagating each of the constraints gives a
propagation algorithm for the original global
constraint.

- A very effective and efficient method for some global
constraints.

A Decomposition of Among

..

e among([X4, Xy, ..., X{], S, N)

e Decomposition as a conjunction of logical
constrains and a sum constraint.
_ B, with D(B;) ={0, 1} for 1 i<k
- C:B=1e Xies for1<si<k
- Cyu1:), Bi=N

o AC(C)) for all iand BC() B,-~) ensures GAC on
among.

A Decomposition of Lex

S
® |eX S([X1, X2, “aey Xk]a [Y1! Y21 =r ey Yk])

e Decomposition as a conjunction of disjunctions.

- B, with D(B;) ={0, 1} for 1 <i < k+1 to indicate the
vectors have been ordered by position i-1.

_ B1=O

- C:(B;=B.,=0AND X =Y;)OR (B,=0 AND B,,; =
AND X.<Y;)OR (B,=B.,,=1)for1<i<k

e GAC(C,) for all i ensures GAC on lex <.

Constraint Decompositions
.

e May not always provide an effective propagation.

e Often GAC on the original constraint is stronger than
(G)AC on the constraints in the decomposition.

A Decomposition of Alldifferent

.
e alldifferent([X,, X, ..., Xi])

e Decomposition as a conjunction of difference
constraints.
- Cip X #X fori<je{1,..k}

o AC(C;) for all i <jis weaker than GAC on

alldifferent.

- E.g., alldifferent([X4, X5, X3]) with D(X;) = D(X,) =
D(X5) = {1,2}.

— alldifferent is not GAC but the decomposition does
not prune anything.

A Decomposition of Sequence

c-
e sequence(l, u, q, [Xq, X,, ..., X], S)
e Decomposition as a conjunction of among
constraints.
- Giramong([X;, Xi+q, ..., Xisg1], S, |, u) for 1 <i<k-q+1
e GAC(C)) for all i is weaker than GAC on
sequence.

- E.g., sequence(2, 3, 5, [X4, X,, ..., X;], {1}) with
Xi=X,=1, Xg=0, D(X) ={0,1} fori € {3,4,5,7}.

- sequence is not GAC but the decomposition does
not prune anything.

A Decomposition of Sequence

]
e 1 1{0,1}{0,11{0,1}0{0,1} =5, | =2, u =3,v={1)

e [1 1{0,13{0,13{0,1}[0{0,1} GAC(among)

e 1[1{0,11{0,11{0,1}0{0,1} GAC(among)

e 1 1[0,13{0,1}{0,130{0,1f GAC(among)

A Decomposition of Sequence

]
e 1 1{0,1}{0,11{0,1}0{0,1} =5, | =2, u =3,v={1)

e [1 1{0,13{0,13{0,1}[0{0,1} GAC(among)

e 1[1{0,11{0,11{0,1}0{0,1} GAC(among)

e 1 1[0,13{0,13{0,130{f,1f GAC(among)

A Decomposition of Lex

c-
o lex <([X4, Xy, o0y, X, [Yq, Yo, .., i)
e Decomposition as a conjunction of implications
- X4y<Y; AND (X;=Y; — X,<Y,) AND ...
(X4 =Y; AND X, =Y, AND X1 = Yir = X YY)
e AC on the decomposition is weaker than GAC on lex=.

- Eg’ IeX S([X'I’ X2]1 [Y1, Y2]) Wlth D(X1) = {0’1}a X2 = 1;
D(Y’I) - {0’1}’ Y2 =0
- lex <is not GAC but the decomposition does not prune anything.

Decomposition vs Ad-hoc Algorithm
0

e Even if a decomposition is effective, may not always
provide an efficient propagation.

e Often propagating a constraint via an ad-hoc algorithm
Is faster than propagating the (many) constraints in the

decomposition.
— Thanks to incremental computation!

Incremental Computation

e A propagation algorithm is often called multiple times.
- We don’t want to re-compute everything each time.

e Incremental computation can improve efficiency.
— At the first call, some partial results are cached.
— At the next invoke, we exploit the cached data.

e This requires access to more details about
propagation:
— which variable has been pruned?
- which values have been pruned?

Dedicated BC Algorithm for Sum
-

o C:

E_X,. =N where X; and N are integer variables.

min(N) =), min(X,)
max(N) < ¥ max(X,)
min(X) =min(N)- Y max(X,) for 1<i<n
max(X;) < max(N) -), min(X,) for1<i<n

BC Decomposition for Sum
.

o C: E,-Xi - N where X; and N are integer variables.

— X1+ X2=Y1
- Yt X3=Y,

- Yoyt X, =N

Filtering min(N)
S

o C: EiX,. =N where X, and N are integer variables.

- min(X4y) + min(X5) < min(Y,)
- min(Y4) + min(X3) < min(Y5)

- rr;in(Y(n_”) + min(X,) < min(N)

which is equivalent to
E_min(Xi) < min(N)

Number of Operations
.

o C: E,-Xi - N where X; and N are integer variables.

- min(X;) + min(X5) < min(Y,)

Read access: 2(n-1)
- min(Y,) + min(X3) < min(Y5,)

Write access: n-1
Sum: n-1

- rr;in(Y(n_”) + min(X,) < min(N)

e B it
Sum: n-1

Number of Operations
.

o C: E,-Xi - N where X; and N are integer variables.

- max(Xq) + max(X;)2max(Ys) Read access: 2(n-1)
- max(Yy) + max(Xs)Zmax(Yz) \Wfrite access: n-1

Sum: n-1

- max(Y.1)) + max(X,) =2 max(N)

B mety
Sum: n-1

Incremental Computation

o C: EiX,. =N where X, and N are integer variables.

~ max(N) <, max(X)
e Cache max(N) as max$(N)

e \Whenever the bounds of a variable X, is pruned:
~ max(N) £ max$(N) — (old(max(X;)) - max(X)) O(1)

Incremental Computation

o C: E,-Xi - N where X; and N are integer variables.

— Complexity reduces to O(1) from O(n)

Classical Sum Incremental Sum
Read access: n Read access: 3
Write access: 1 Write access: 1

Sum: n-1 Sum: 2

Dedicated Propagation Algorithms
S

e Dedicated ad-hoc algorithms provide
effective and efficient propagation.

e Often:

- GAC is maintained in polynomial time;

- many more inconsistent values are detected
compared to the decompositions;

- computation is done incrementally.

