
Global Constraints

l Capture complex, non-binary and recurring
combinatorial substructures arising in a 
variety of applications.

l Embed specialized propagation which 
exploits the substructure. 



Benefits of Global Constraints

l Modelling benefits
– Reduce the gap between the problem statement 

and the model.
– May allow the expression of constraints that are 

otherwise not possible to state using primitive 
constraints (semantic).

l Solving benefits
– Strong inference in propagation (operational).
– Efficient propagation (algorithmic).



Some Groups of Global Constraints

l Counting 
l Sequencing
l Scheduling
l Ordering
l Balancing
l Distance
l Packing
l Graph-based
l …



Counting Constraints

l Restrict the number of variables satisfying a 
condition or the number of times values are 
taken. 



Alldifferent Constraint

l alldifferent([X1, X2, …, Xk]) iff
Xi ≠ Xj for i < j ∈ {1,…,k}

– permutation constraint with |D(Xi)| = k.
– alldifferent([3,5,2,1,4])

l Useful in a variety of context, like:
– puzzles (e.g., sudoku and n-queens);
– timetabling (e.g. allocation of activities to different 

slots);
– scheduling (e.g. a team can play at most once in a 

week);
– configuration (e.g. a particular product cannot have 

repeating components).



Nvalue Constraint

l Constrains the number of distinct values 
assigned to the variables. 

l Nvalue([X1, X2, …, Xk], N) iff N = |{Xi | 1 ≤ i ≤ k }| 
– Nvalue([1, 2, 2, 1, 3], 3).
– alldifferent when N = k.

l Useful e.g. in: 
– resource allocation (e.g. limit the number of resource 

types). 



Global Cardinality Constraint

l Constrains the number of times each value is 
taken by the variables.

l gcc([X1, X2, …, Xk], [v1, …, vm], [O1, …, Om]) iff
forall j ∈ {1,…, m} Oj = |{Xi | Xi = vj, 1 ≤ i ≤ k }|  

– gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
– alldifferent when Oj ≤ 1.

l Useful e.g. in:
– resource allocation (e.g. limit the usage of each 

resource).



Among Constraint

l Constrains the number of variables taken     
from a given set of values.

l among([X1, X2, …, Xk], s, N)  iff
N = |{i | Xi ∈ s, 1 ≤ i ≤ k }|

– among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 4)
l among([X1, X2, …, Xk], s, l, u)  iff

l ≤ |{i | Xi ∈ s, 1 ≤ i ≤ k }| ≤ u
– among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 3, 4)

l Useful in sequencing problems, as we see next. 



Sequencing Constraints

l Ensure a sequence of variables obey certain 
patterns.



Sequence/AmongSeq Constraint

l Constrains the number of values taken from a 
given set in any subsequence of q variables.

l sequence(l, u, q, [X1, X2, …, Xk], s) iff
among([Xi, Xi+1, …, Xi+q-1], s, l, u)  for 1 ≤ i ≤ k-q+1
– sequence(1,2,3,[1,0,2,0,3],{0,1}) 

l Useful e.g. in: 
– rostering (e.g. every employee has 2 days off in any 7 

day of period);
– production line (e.g. at most 1 in 3 cars along the 

production line can have a sun-roof fitted).



Scheduling Constraints

l Help schedule tasks with respective release 
times, duration, and deadlines, using limited 
resources in a time interval. 



Disjunctive Resource Constraint

l Requires that tasks do not overlap in time. 
– Known also as noOverlap constraint.

l Given tasks t1, …, tk, each associated with a 
start time Si and duration Di: 

disjunctive([S1, …, Sk],[D1, …, Dk]) iff for all i < j 
(Si + Di ≤ Sj ) ⋁ (Sj + Dj ≤ Si )

l Useful when a resource 
can execute at most one 
task at a time. 



Cumulative Resource Constraint

l Useful when a resource with 
a capacity can execute 
multiple tasks at a time. 



Ordering Constraints

l Enforce an ordering between the variables or 
the values. 



Lexicographic Ordering Constraint

l Requires a sequence of variables to be lexicographically 
less than or equal to another sequence of variables. 

l lex≤([X1, X2, …, Xk] , [Y1, Y2, …, Yk]) holds iff:
X1 ≤ Y1 ∧
(X1 = Y1 à X2 ≤ Y2) ∧
(X1 = Y1 ∧ X2 = Y2 à X3 ≤ Y3) … 
(X1 = Y1 ∧ X2 = Y2 …. Xk-1 = Yk-1 à Xk ≤ Yk) 
– lex≤([1, 2, 4],[1, 3, 3])

l Useful in symmetry breaking. 
– Avoid permutations of (groups of) variables.



Permutation of Variables

l lex≤([X1, X2, …, Xk] , π([X1, X2, …, Xk])) for some 
π.

l E.g., with n-Queens:



Permutation of Two Sequences of 
Variables

l Assignments of items to two identical bins can be 
represented by a matrix of Boolean variables:
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Permutation of Two Sequences of 
Variables

l Need to avoid the symmetric assignments.
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l lex ≤(X , Y).
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Value Precedence Constraint

l Requires a value to precede another value in a sequence 
of variables. 

l value_precede(vj1, vj2, [X1, X2, …, Xk]) holds iff:
– min{ i | Xi = vj1 ∨ i = k+1} < min{ i | Xi = vj2 ∨ i = k + 2}. 
– value_precede(5, 4, [2, 5, 3, 5, 4])

l Useful in symmetry breaking. 
– Avoid permutations of values.



Specialized Propagation for Global 
Constraints

l How do we develop specialized propagation 
for global constraints?

l Two main approaches:
– constraint decomposition;
– dedicated ad-hoc algorithm.



Constraint Decomposition

l A global constraint is decomposed into smaller 
and simpler constraints, each of which has a 
known propagation algorithm.

l Propagating each of the constraints gives a 
propagation algorithm for the original global 
constraint.
– A very effective and efficient method for some global 

constraints.



A Decomposition of Among

l among([X1, X2, …, Xk], s, N)
l Decomposition as a conjunction of logical 

constrains and a sum constraint. 
– Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ k 
– Ci: Bi = 1 ↔ Xi ∈ s for 1 ≤ i ≤ k 
– Ck+1:

l AC(Ci) for all i and BC(           ) ensures GAC on 
among.
€ 

Bi = N
i∑

€ 

Bi = N
i∑



A Decomposition of Lex

l lex ≤([X1, X2, …, Xk], [Y1, Y2, …, Yk]) 
l Decomposition as a conjunction of disjunctions.

- Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ k+1 to indicate the 
vectors have been ordered by position i-1. 

- B1= 0
- Ci: (Bi = Bi+1 = 0 AND Xi = Yi ) OR  (Bi = 0 AND Bi+1 = 1 

AND Xi < Yi ) OR (Bi = Bi+1 = 1) for 1 ≤ i ≤ k   
l GAC(Ci) for all i ensures GAC on lex ≤.



Constraint Decompositions

l May not always provide an effective propagation.
l Often GAC on the original constraint is stronger than 

(G)AC  on the constraints in the decomposition.



A Decomposition of Alldifferent

l alldifferent([X1, X2, …, Xk])
l Decomposition as a  conjunction of difference 

constraints. 
– Cij: Xi ≠ Xj for i < j ∈ {1,…,k}

l AC(Cij) for all i < j is weaker than GAC on 
alldifferent.
– E.g., alldifferent([X1, X2, X3])  with D(X1) = D(X2) = 

D(X3) = {1,2}.   
– alldifferent is not GAC but the decomposition does 

not prune anything.



A Decomposition of Sequence

l sequence(l, u, q, [X1, X2, …, Xk], s)
l Decomposition as a conjunction of among 

constraints.
– Ci: among([Xi, Xi+1, …, Xi+q-1], s, l, u)  for 1 ≤ i ≤ k-q+1

l GAC(Ci) for all i is weaker than GAC on 
sequence. 
– E.g., sequence(2, 3, 5, [X1, X2, …, X7], {1}) with        

X1 = X2 = 1, X6 = 0, D(Xi) = {0,1} for i ∊ {3,4,5,7}.
– sequence is not GAC but the decomposition does 

not prune anything.



A Decomposition of Sequence

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}  q=5, l =2, u =3,v={1}

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}      GAC(among) 

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}      GAC(among) 

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}      GAC(among) 



A Decomposition of Sequence

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}  q=5, l =2, u =3,v={1}

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}      GAC(among) 

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}      GAC(among) 

l 1 1 {0,1} {0,1} {0,1} 0 {0,1}      GAC(among) 



A Decomposition of Lex

l lex ≤([X1, X2, …, Xk], [Y1, Y2, …, Yk])
l Decomposition as a conjunction of implications

- X1 ≤ Y1   AND   (X1 = Y1  → X2 ≤ Y2) AND  …

(X1 = Y1  AND X2 = Y2 AND …. Xk-1 = Yk-1 → Xk ≤ Yk) 
l AC on the decomposition is weaker than GAC on lex≤.

- E.g., lex ≤([X1, X2], [Y1, Y2])  with  D(X1) =  {0,1},  X2 = 1,                
D(Y1) =  {0,1},  Y2 = 0

- lex ≤ is not GAC but the decomposition does not prune anything.



Decomposition vs Ad-hoc Algorithm

l Even if a decomposition is effective, may not always 
provide an efficient propagation.

l Often propagating a constraint via an ad-hoc algorithm 
is faster than propagating the (many) constraints in the 
decomposition.
– Thanks to incremental computation! 



Incremental Computation

l A propagation algorithm is often called multiple times.
– We don’t want to re-compute everything each time.  

l Incremental computation can improve efficiency.
– At the first call, some partial results are cached. 
– At the next invoke, we exploit the cached data.  

l This requires access to more details about 
propagation:
– which variable has been pruned?
– which values have been pruned?



Dedicated BC Algorithm for Sum

l C:         where Xi and N are integer variables. 

– min(N)  ≥ 
– max(N) ≤
– min(Xi)  ≥ min(N) - for 1 ≤ i ≤ n 
– max(Xi) ≤ max(N) - for 1 ≤ i ≤ n 

Xi = Ni∑

min(Xi )i∑
max(Xi )i∑

max(Xj )j≠i∑
min(Xj )j≠i∑



BC Decomposition for Sum

l C:         where Xi and N are integer variables.

– X1 +  X2 = Y1

– Y1 +  X3 = Y2

– ...
– Y(n-1)+Xn = N

Xi = Ni∑



Filtering min(N)

l C:         where Xi and N are integer variables.

– min(X1) +  min(X2) ≤ min(Y1)
– min(Y1) +  min(X3) ≤ min(Y2)
– ...
– min(Y(n-1)) + min(Xn) ≤ min(N) 

which is  equivalent to
≤ min(N) 

Xi = Ni∑

min(Xi )i∑



Number of Operations

l C:         where Xi and N are integer variables.

– min(X1) +  min(X2) ≤ min(Y1)
– min(Y1) +  min(X3) ≤ min(Y2)
– ...
– min(Y(n-1)) + min(Xn) ≤ min(N) 

≤ min(N) 

Xi = Ni∑

min(Xi )i∑

Read access: 2(n-1) 
Write access:  n-1
Sum: n-1

Read access: n 
Write access: 1
Sum: n-1  



Number of Operations

l C:         where Xi and N are integer variables.

– max(X1) +  max(X2) ≥ max(Y1)
– max(Y1) +  max(X3) ≥ max(Y2)
– ...
– max(Y(n-1)) + max(Xn) ≥ max(N) 

≥ max(N) 

Xi = Ni∑

max(Xi )i∑

Read access: 2(n-1) 
Write access:  n-1
Sum: n-1

Read access: n 
Write access: 1
Sum: n-1  



Incremental Computation

l C:         where Xi and N are integer variables. 

– max(N) ≤
l Cache max(N) as max$(N)
l Whenever the bounds of a variable Xi is pruned:

– max(N) ≤ max$(N) – (old(max(Xi)) - max(Xi))

Xi = Ni∑

max(Xi )i∑

O(1)



Incremental Computation

l C:         where Xi and N are integer variables. 

– Complexity reduces to O(1) from O(n) 

Xi = Ni∑

Classical Sum
Read access: n 
Write access:  1
Sum: n-1

Incremental Sum
Read access: 3 
Write access:  1
Sum: 2



Dedicated Propagation Algorithms

l Dedicated ad-hoc algorithms provide 
effective and efficient propagation.

l Often:
– GAC is maintained in polynomial time;
– many more inconsistent values are detected 

compared to the decompositions;
– computation is done incrementally. 


