Global Constraints

- Capture complex, non-binary and recurring combinatorial substructures arising in a variety of applications.
- Embed specialized propagation which exploits the substructure.

Benefits of Global Constraints

Modelling benefits

- Reduce the gap between the problem statement and the model.
- May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).

Solving benefits

- Strong inference in propagation (operational).
- Efficient propagation (algorithmic).

Some Groups of Global Constraints

- Counting
- Sequencing
- Scheduling
- Ordering
- Balancing
- Distance
- Packing

. . .

• Graph-based

Counting Constraints

• Restrict the number of variables satisfying a condition or the number of times values are taken.

Alldifferent Constraint

- all different([X₁, X₂, ..., X_k]) iff $X_i \neq X_j$ for $i < j \in \{1, ..., k\}$
 - permutation constraint with $|D(X_i)| = k$.
 - alldifferent([3,5,2,1,4])
- Useful in a variety of context, like:
 - puzzles (e.g., sudoku and n-queens);
 - timetabling (e.g. allocation of activities to different slots);
 - scheduling (e.g. a team can play at most once in a week);
 - configuration (e.g. a particular product cannot have repeating components).

Nvalue Constraint

- Constrains the number of distinct values assigned to the variables.
- Nvalue($[X_1, X_2, ..., X_k]$, N) iff N = $|\{X_i | 1 \le i \le k\}|$
 - Nvalue([1, 2, 2, 1, 3], 3).
 - all different when N = k.
- Useful e.g. in:
 - resource allocation (e.g. limit the number of resource types).

Global Cardinality Constraint

- Constrains the number of times each value is taken by the variables.
- $gcc([X_1, X_2, ..., X_k], [v_1, ..., v_m], [O_1, ..., O_m])$ iff forall $j \in \{1, ..., m\}$ $O_j = |\{X_i \mid X_i = v_j, 1 \le i \le k\}|$
 - gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
 - all different when $O_j \leq 1$.
- Useful e.g. in:
 - resource allocation (e.g. limit the usage of each resource).

Among Constraint

Constrains the number of variables taken from a given set of values.
among([X₁, X₂, ..., X_k], s, N) iff N = |{i | X_i ∈ s, 1 ≤ i ≤ k }| - among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 4)
among([X₁, X₂, ..., X_k], s, I, u) iff I ≤ |{i | X_i ∈ s, 1 ≤ i ≤ k }| ≤ u

- among([1, 5, 3, 2, 5, 4], {1,2,3,4}, 3, 4)

Useful in sequencing problems, as we see next.

Sequencing Constraints

• Ensure a sequence of variables obey certain patterns.

Sequence/AmongSeq Constraint

- Constrains the number of values taken from a given set in any subsequence of q variables.
- sequence(I, u, q, $[X_1, X_2, ..., X_k]$, s) iff among($[X_i, X_{i+1}, ..., X_{i+q-1}]$, s, I, u) for $1 \le i \le k-q+1$ - sequence(1,2,3,[1,0,2,0,3],{0,1})
- Useful e.g. in:
 - rostering (e.g. every employee has 2 days off in any 7 day of period);
 - production line (e.g. at most 1 in 3 cars along the production line can have a sun-roof fitted).

Scheduling Constraints

• Help schedule tasks with respective release times, duration, and deadlines, using limited resources in a time interval.

Disjunctive Resource Constraint

- Requires that tasks do not overlap in time.
 Known also as noOverlap constraint.
- Given tasks t₁, ..., t_k, each associated with a start time S_i and duration D_i:

 Useful when a resource can execute at most one
 1 2 3 4 task at a time.

Cumulative Resource Constraint

- Constrains the usage of a shared resource.
- Given tasks t₁, ...,t_k, each associated with a start time S_i, duration D_i, resource requirement R_i, and a resource with a capacity C:

cumulative([S₁, ..., S_k], [D₁, ..., D_k], [R₁, ..., R_k], C) iff $\sum_{i|S_i \le u < S_i + D_i} R_i \le C$ forall u in D

 Useful when a resource with a capacity can execute multiple tasks at a time.

Ordering Constraints

• Enforce an ordering between the variables or the values.

Lexicographic Ordering Constraint

- Requires a sequence of variables to be lexicographically less than or equal to another sequence of variables.
- $ex \leq ([X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])$ holds iff: $X_1 \leq Y_1 \land$ $(X_1 = Y_1 \rightarrow X_2 \leq Y_2) \land$ $(X_1 = Y_1 \land X_2 = Y_2 \rightarrow X_3 \leq Y_3) ...$ $(X_1 = Y_1 \land X_2 = Y_2 ..., X_{k-1} = Y_{k-1} \rightarrow X_k \leq Y_k)$ $- ex \leq ([1, 2, 4], [1, 3, 3])$
- Useful in symmetry breaking.
 - Avoid permutations of (groups of) variables.

Permutation of Variables

- lex≤([X₁, X₂, ..., X_k], π([X₁, X₂, ..., X_k])) for some
 π.
- E.g., with n-Queens:

```
constraint
```

```
lex_lesseq(array1d(qb), [ qb[j,i] | i,j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ])
```

• Assignments of items to two identical bins can be represented by a matrix of Boolean variables:

	i ₁	i ₂	i ₃	i ₄	İ ₅	i ₆
Х	1	0	1	0	1	0
V	0	1	0	1	0	1

• Need to avoid the symmetric assignments.

$$i_{1} i_{2} i_{3} i_{4} i_{5} i_{0}$$

$$X 1 0 1 0 1 0$$

$$Y 0 1 0 1 0 1$$

	i ₁	i ₂	i ₃	i ₄	i ₅	i ₆	
Х	0	1	0	1	0	1	
Y	1	0	1	0	1	0	

• lex ≤(X , Y).

	i ₁	i ₂	i ₃	i ₄	i ₅	i ₆	
Х	0	1	0	1	0	1	
Y	1	0	1	0	1	0	

• Need to avoid the symmetric assignments.

• **lex** ≤(i₃, i₄).

	i ₁	i ₂	i ₃	i ₄	İ ₅	i ₆
Х	0	1	0	1	0	1
Y	1	0	1	0	1	0

Value Precedence Constraint

- Requires a value to precede another value in a sequence of variables.
- value_precede(v_{j1} , v_{j2} , [X₁, X₂, ..., X_k]) holds iff:
 - $-\min\{i \mid X_i = v_{j1} \lor i = k+1\} < \min\{i \mid X_i = v_{j2} \lor i = k+2\}.$
 - value_precede(5, 4, [2, 5, 3, 5, 4])
- Useful in symmetry breaking.
 - Avoid permutations of values.

Specialized Propagation for Global Constraints

- How do we develop specialized propagation for global constraints?
- Two main approaches:
 - constraint decomposition;
 - dedicated ad-hoc algorithm.

Constraint Decomposition

- A global constraint is decomposed into smaller and simpler constraints, each of which has a known propagation algorithm.
- Propagating each of the constraints gives a propagation algorithm for the original global constraint.
 - A very effective and efficient method for some global constraints.

A Decomposition of Among

- among([X₁, X₂, ..., X_k], s, N)
- Decomposition as a conjunction of logical constrains and a sum constraint.
 - B_i with $D(B_i) = \{0, 1\}$ for $1 \le i \le k$
 - C_i : B_i = 1 ↔ X_i ∈ s for 1 ≤ i ≤ k
 - $\mathbf{C}_{k+1}: \sum_{i} B_i = N$
- AC(C_i) for all i and BC($\sum_i B_i = N$) ensures GAC on among.

A Decomposition of Lex

- $|ex \leq ([X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])$
- Decomposition as a conjunction of disjunctions.
 - B_i with $D(B_i) = \{0, 1\}$ for $1 \le i \le k+1$ to indicate the vectors have been ordered by position i-1.
 - B₁= 0
 - C_i : $(B_i = B_{i+1} = 0 \text{ AND } X_i = Y_i) \text{ OR } (B_i = 0 \text{ AND } B_{i+1} = 1 \text{ AND } X_i < Y_i) \text{ OR } (B_i = B_{i+1} = 1) \text{ for } 1 \le i \le k$
- $GAC(C_i)$ for all i ensures GAC on lex \leq .

Constraint Decompositions

- May not always provide an effective propagation.
- Often GAC on the original constraint is stronger than (G)AC on the constraints in the decomposition.

A Decomposition of Alldifferent

- alldifferent([X₁, X₂, ..., X_k])
- Decomposition as a conjunction of difference constraints.
 - $\textbf{C}_{ij} : X_i \neq X_j \ \text{ for } i < j \in \{1, \ldots, k\}$
- AC(C_{ij}) for all i < j is weaker than GAC on alldifferent.
 - E.g., all different($[X_1, X_2, X_3]$) with $D(X_1) = D(X_2) = D(X_3) = \{1,2\}$.
 - alldifferent is not GAC but the decomposition does not prune anything.

A Decomposition of Sequence

- sequence(I, u, q, [X₁, X₂, ..., X_k], s)
- Decomposition as a conjunction of among constraints.
 - C_i : among([X_i, X_{i+1}, ..., X_{i+q-1}], s, l, u) for 1 ≤ i ≤ k-q+1
- GAC(C_i) for all i is weaker than GAC on sequence.
 - E.g., sequence(2, 3, 5, $[X_1, X_2, ..., X_7]$, {1}) with $X_1 = X_2 = 1$, $X_6 = 0$, $D(X_i) = \{0,1\}$ for $i \in \{3,4,5,7\}$.
 - sequence is not GAC but the decomposition does not prune anything.

A Decomposition of Sequence

- 1 1 $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ 0 $\{0,1\}$ q=5, I =2, u =3,v= $\{1\}$
- 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)

1 {0,1} {0,1} {0,1} 0,1}

1 1 {0,1} {0,1} {0,1} 0 {0,1}

GAC(among)

GAC(among)

A Decomposition of Sequence

- 1 1 {0,1} {0,1} {0,1} 0 {0,1} $q=5, I=2, u=3, v={1}$
- 1 1 {0,1} {0,1} {0,1} 0 {0,1} GAC(among)
- 1 {0,1} {0,1} {0,1} 0 {0,1}
- GAC(among)
- 1 1 {0,1} {0,1} {0,1} 0 {0,1}
- GAC(among)

A Decomposition of Lex

- $ex \leq ([X_1, X_2, ..., X_k], [Y_1, Y_2, ..., Y_k])$
- Decomposition as a conjunction of implications
 - $X_1 \leq Y_1$ AND $(X_1 = Y_1 \rightarrow X_2 \leq Y_2)$ AND ...

 $(X_1 = Y_1 AND X_2 = Y_2 AND \dots X_{k-1} = Y_{k-1} \rightarrow X_k \leq Y_k)$

- AC on the decomposition is weaker than GAC on lex≤.
 - E.g., lex $\leq ([X_1, X_2], [Y_1, Y_2])$ with $D(X_1) = \{0,1\}, X_2 = 1, D(Y_1) = \{0,1\}, Y_2 = 0$
 - lex \leq is not GAC but the decomposition does not prune anything.

Decomposition vs Ad-hoc Algorithm

- Even if a decomposition is effective, may not always provide an efficient propagation.
- Often propagating a constraint via an ad-hoc algorithm is faster than propagating the (many) constraints in the decomposition.
 - Thanks to incremental computation!

Incremental Computation

- A propagation algorithm is often called multiple times.
 - We don't want to re-compute everything each time.
- Incremental computation can improve efficiency.
 - At the first call, some partial results are cached.
 - At the next invoke, we exploit the cached data.
- This requires access to more details about propagation:
 - which variable has been pruned?
 - which values have been pruned?

Dedicated BC Algorithm for Sum

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

$$- \min(N) \geq \sum_{i} \min(X_i)$$

$$- \max(\mathsf{N}) \leq \sum_{i} \max(X_{i})$$

 $-\min(X_i) \ge \min(N) - \sum_{j \neq i} \max(X_j) \text{ for } 1 \le i \le n$

$$- \max(X_i) \le \max(N) - \sum_{j \ne i} \min(X_j) \text{ for } 1 \le i \le n$$

BC Decomposition for Sum

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

$$\begin{array}{rrrr} - & X_1 + & X_2 = Y_1 \\ - & Y_1 + & X_3 = Y_2 \end{array}$$

$$- Y_{(n-1)} + X_n = N$$

Filtering min(N)

- C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.
 - $\min(X_1) + \min(X_2) \le \min(Y_1)$
 - $\min(Y_1) + \min(X_3) \le \min(Y_2)$
 - ...
 - $\min(Y_{(n-1)}) + \min(X_n) \le \min(N)$

which is equivalent to $\sum_{i} \min(X_i) \leq \min(\mathsf{N})$

Number of Operations

- C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.
 - $\min(X_1) + \min(X_2) \le \min(Y_1)$
 - $\min(Y_1) + \min(X_3) \le \min(Y_2)$
 - ...

 $- \min(Y_{(n-1)}) + \min(X_n) \le \min(N)$

Read access: 2(n-1) Write access: n-1 Sum: n-1

 $\sum_{i} \min(X_i) \leq \min(\mathsf{N})$

Read access: n Write access: 1 Sum: n-1

Number of Operations

- C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.
 - $\max(X_1) + \max(X_2) \ge \max(Y_1)$
 - $\max(Y_1) + \max(X_3) \ge \max(Y_2)$
 - max(Y_(n-1)) + max(X_n) ≥ max(N)

Read access: 2(n-1) Write access: n-1 Sum: n-1

 $\sum_{i} \max(X_i) \geq \max(\mathsf{N})$

Read access: n Write access: 1 Sum: n-1

Incremental Computation

• C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.

 $- \max(\mathsf{N}) \leq \sum_{i} \max(X_i)$

- Cache max(N) as max\$(N)
- Whenever the bounds of a variable X_i is pruned:
 - $\max(N) \le \max(N) (old(\max(X_i)) \max(X_i)) \quad O(1)$

Incremental Computation

- C: $\sum_{i} X_{i} = N$ where X_{i} and N are integer variables.
 - Complexity reduces to O(1) from O(n)

Classical Sum Read access: n Write access: 1 Sum: n-1

Im Incremental Sum Read access: 3 Write access: 1 Sum: 2

Dedicated Propagation Algorithms

- Dedicated ad-hoc algorithms provide effective and efficient propagation.
- Often:
 - GAC is maintained in polynomial time;
 - many more inconsistent values are detected compared to the decompositions;
 - computation is done incrementally.