PART II: Constraint Propagation & Global Constraints

Constraint Solver

- **Enumerates all possible variable-value** combinations via a systematic backtracking tree search.
	- Guesses a value for each variable.
- During search, examines the constraints to remove incompatible (inconsistent) values from the domains of the future (unexplored) variables, via propagation.
	- Shrinks the domains of the future variables.

Search and Propagation

• Search decisions and propagation are interleaved.

Propagation

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent([X₁, X₂, X₃])

- $X_1 = 1, X_2 \in \{0, 1\} \ X_3 \in \{1, 2\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent([X₁, X₂, X₃])

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,\cancel{1},\cancel{3}\}$ $X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent([X₁, X₂, X₃])

- $X_1 = 2$ $X_2 \in \{\emptyset, 1\}$ $X_3 \in \{\n \pmb{\not} \pmb{\pmb{\ell}}, 3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and alldifferent([X₁, X₂, X₃])

Outline

- Local Consistency
	- Generalized Arc Consistency (GAC)
	- Bounds Consistency (BC)
- Constraint Propagation
	- Propagation Algorithms
- Specialized Propagation
	- Global Constraints
- **Global Constraints for Generic Purposes**

Local Consistency

- A form of inference which detects inconsistent partial assignments.
	- Local, because we examine individual constraints.
- l Popular local consistencies are domain-based:
	- Generalized Arc Consistency (GAC).
		- Also referred to as Hyper-arc or Domain Consistency;
	- Bounds Consistency (BC).
	- They detect inconsistent partial assignments of the form $X_i = j$, hence:
		- \bullet j can be removed from $D(X_i)$ via propagation;
		- propagation can be implemented easily.

Generalized Arc Consistency (GAC)

- A constraint C defined on k variables $C(X_1,..., X_k)$ gives the set of allowed combinations of values (i.e. allowed tuples).
	- $-C \subseteq D(X_1) \times ... \times D(X_k)$

– E.g., $D(X_1) = \{0,1\}$, $D(X_2) = \{1,2\}$, $D(X_3) = \{2,3\}$ C: $X_1 + X_2 = X_3$

 $C(X_1,X_2,X_3) = \{(0,2,2), (1,1,2), (1,2,3)\}\$

Each allowed tuple $(d_1,...,d_k) \in C$ where $d_i \in X_i$ is a support for C.

GAC

- $C(X_1, \ldots, X_k)$ is GAC iff:
	- for all X_i in $\{X_1, \ldots, X_k\}$, for all $v \in D(X_i)$, v belongs to a support for C.
- Called Arc Consistency (AC) when $k = 2$.
- A CSP is GAC iff all its constraints are GAC.

- $D(X_1) = \{1,2,3\}, D(X_2) = \{2,3,4\}, C: X_1 = X_2$
	- $-$ AC(C)?
		- 1 \in D(X₁) and 4 \in D(X₂) do not have a support.
		- X_1 = 1 and X_2 = 4 are inconsistent partial assignments.
- $D(X_1) = \{1,2,3\}, D(X_2) = \{1,2\}, D(X_3) = \{1,2\},$ C: alldifferent($[X_1, X_2, X_3]$)
	- $-$ GAC(C)?
		- 1 \in D(X₁) and 2 \in D(X₁) do not have support.
		- X_1 = 1 and X_1 = 2 are inconsistent partial assignments.

Bounds Consistency (BC)

- Defined for totally ordered (e.g. integer) domains.
- Relaxes the domain of X_i from $D(X_i)$ to $[min(X_i) ... max(X_i)]$.

 $-$ E.g., D(X_i) = {1,3,5} \rightarrow [1..5]

- A bound support is a tuple $(d_1,...,d_k) \in \mathbb{C}$ where $d_i \in$ $[min(X_i)$. max $(X_i)]$.
- $C(X_1, \ldots, X_k)$ is BC iff:
	- For all X_i in $\{X_1, \ldots, X_k\}$, min (X_i) and max (X_i) belong to a bound support.

BC

• Disadvantage

- BC might not detect all GAC inconsistencies in general.
	- We need to search more.
- Advantages
	- Might be easier to look for a support in a range than in a domain.
	- Achieving BC is often cheaper than achieving GAC.
		- Of interest in arithmetic constraints defined on integer variables with large domains.
	- Achieving BC is enough to achieve GAC for monotonic constraints.

GAC = BC

- All values of $D(X) \le max(Y)$ are GAC.
- All values of $D(Y) \ge min(X)$ are GAC.
- \bullet Enough to adjust max(X) and min(Y).
	- $max(X) \leq max(Y)$
	- min(X) ≤ min(Y)

GAC > BC

- $D(X_1) = D(X_2) = \{1, 2\}, D(X_3) = D(X_4) = \{2, 3, 5, 6\}, X_5 = 5, D(X_6) =$ $\{3,4,5,6,7\}$, alldifferent([X₁, X₂, X₃, X₄, X₅, X₆])
- Only 2 \in D(X₃) and 2 \in D(X₄) have no BC support.

Original BC

X1 X2 X3 X4 X5 X6

1

2

3

4

5

6

7

GAC > BC

- $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, X_5 = 5, D(X_6) =$ $\{3,4,5,6,7\}$, alldifferent([X₁, X₂, X₃, X₄, X₅, X₆])
- ${2,5} \in D(X_3)$, ${2,5} \in D(X_4)$, ${3,5,6} \in D(X_6)$ have no GAC support.

Outline

- Local Consistency
	- Generalized Arc Consistency (GAC)
	- Bounds Consistency (BC)
- Constraint Propagation
	- Propagation Algorithms
- Specialized Propagation
	- Global Constraints
- **Global Constraints for Generic Purposes**

Constraint Propagation

- Can appear under different names:
	- constraint relaxation
	- filtering
	- local consistency enforcing, …
- A local consistency notion defines properties that a constraint C must satisfy after constraint propagation.
	- The operational behaviour is completely left open.
	- We can develop different algorithms with different complexities to achieve the same effect.
	- The only requirement is to achieve the required property on C.

Propagation Algorithms

- A propagation algorithm achieves a certain level of consistency on a constraint C by removing the inconsistent values from the domains of the variables in C.
- The level of consistency depends on C.
	- GAC if an efficient propagation algorithm can be developed.
	- Otherwise BC or a lower level of consistency.

Propagation Algorithms

- When solving a CSP with multiple constraints:
	- propagation algorithms interact;
	- a propagation algorithm can wake up an already propagated constraint to be propagated again!
	- in the end, propagation reaches a fixed-point and all constraints reach a level of consistency;
	- the whole process is referred as constraint propagation.

- $D(X_1) = D(X_2) = D(X_3) = \{1, 2, 3\}$ C₁: alldifferent([X₁, X₂, X₃]) C₂: X₂ < 3 C₃: X₃ < 3
- \bullet Let's assume:
	- the order of propagation is C_1 , C_2 , C_3 ;
	- propagation algorithms maintain (G)AC.
- Propagation of C_1 :
	- nothing happens, C_1 is GAC.
- Propagation of C_2 :
	- 3 is removed from $D(X_2)$, C_2 is now AC.
- Propagation of C_3 :
	- 3 is removed from $D(X_3)$, C_3 is now AC.
- C₁ is not GAC anymore, because the supports of $\{1,2\} \in D(X_1)$ in $D(X_2)$ and $D(X_3)$ are removed by the propagation of C_2 and C_3 .
- Re-propagation of C_1 :
	- 1 and 2 are removed from $D(X_1)$, C_1 is now AC.

Properties of Propagation Algorithms

- It may not be enough to remove inconsistent values from domains once.
- A propagation algorithm must wake up again when necessary, otherwise may not achieve the desired local consistency property.
- Events that can trigger a constraint propagation:
	- when the domain of a variable changes (for GAC);
	- when the domain bounds of a variable changes (for BC);
	- when a variable is assigned a value;

– …

Complexity of Propagation Algorithms

- Assume $|D(X_i)| = d$.
- Following the definition of the local consistency property:
	- one time AC propagation on a $C(X_1,X_2)$ takes $O(d^2)$ time.
- We can do better!

- \bullet C: $X_1 = X_2$
	- D(X₁) = D(X₂) = D(X₁) ∩ D(X₂)
	- Complexity: the cost of the set intersection operation
- \bullet C: $X_1 \neq X_2$
	- When $D(X_i) = \{v\}$, remove v from $D(X_j)$.
	- Complexity: O(1)
- \bullet C: $X_1 \leq X_2$
	- $-$ max(X_1) \leq max(X_2), min(X_1) \leq min(X_2)
	- Complexity: O(1)

Outline

• Local Consistency

- Generalized Arc Consistency (GAC)
- Bounds Consistency (BC)
- Constraint Propagation
	- Propagation Algorithms
- Specialized Propagation
	- Global Constraints
		- Decompositions
		- Ad-hoc Algorithms
- **Global Constraints for Generic Purposes**

Specialized Propagation

- Propagation specific to a given constraint.
- Advantages
	- Exploits the constraint semantics.
	- Potentially much more efficient than a general propagation approach.

Specialized BC Propagation

- **C**: $X_1 = X_2 + X_3$
- **Observation**
	- min(X_1) cannot be smaller than min(X_2) + min(X_3).
	- max(X_1) cannot be larger than max(X_2) + max(X_3).
	- min(X_2) cannot be smaller than min(X_1) max(X_3).
	- max(X_2) cannot be larger than max(X_1) min(X_3).
	- $-$ X₃ analogous to X₂.
- BC propagation rules
	- $-$ max(X₁) ≤ max(X₂) + max(X₃), min(X₁) ≥ min(X₂) + min(X₃)
	- $-$ max(X₂) ≤ max(X₁) min(X₃), min(X₂) ≥ min(X₁) max(X₃)
	- $-$ Similarly for X_3

•
$$
D(X_1) = [4, 9], D(X_2) = [3, 5], D(X_3) = [2, 3]
$$

C: $X_1 = X_2 + X_3$

•
$$
D(X_1) = [5,8], D(X_2) = [3,5], D(X_3) = [2,3]
$$

C: $X_1 = X_2 + X_3$

- **Propagation**
	- max(X₁) ≤ max(X₂) + max(X₃), min(X₁) ≥ min(X₂) + min(X₃)

•
$$
D(X_1) = [5,8], D(X_2) = [3,5], D(X_3) = [2,3]
$$

C: $X_1 = X_2 + X_3$

- **Propagation**
	- $-$ max(X₁) ≤ max(X₂) + max(X₃), min(X₁) ≥ min(X₂) + min(X₃)
	- $-$ max(X₂) ≤ max(X₁) min(X₃), min(X₂) ≥ min(X₁) max(X₃)
	- Similarly for X_3

•
$$
X_1 = 5
$$
, $D(X_2) = [3,5]$, $D(X_3) = [2,3]$
C: $X_1 = X_2 + X_3$

- **Propagation**
	- $-$ max(X₁) ≤ max(X₂) + max(X₃), min(X₁) ≥ min(X₂) + min(X₃)
	- $-$ max(X₂) ≤ max(X₁) min(X₃), min(X₂) ≥ min(X₁) max(X₃)
	- Similarly for X_3

•
$$
X_1 = 5
$$
, $D(X_2) = [3]$, $D(X_3) = [2]$
C: $X_1 = X_2 + X_3$

- **Propagation**
	- $-$ max(X₁) ≤ max(X₂) + max(X₃), min(X₁) ≥ min(X₂) + min(X₃)
	- $-$ max(X₂) ≤ max(X₁) min(X₃), min(X₂) ≥ min(X₁) max(X₃)
	- Similarly for X_3

Specialized Propagation

- Propagation specific to a given constraint.
- Advantages
	- Exploits the constraint semantics.
	- Potentially much more efficient than a general propagation approach.
- Disadvantages
	- Limited use.
	- Not always easy to develop one.
- Worth developing for recurring constraints.

Global Constraints

- Capture complex, non-binary and recurring combinatorial substructures arising in a variety of applications.
- Embed specialized propagation which exploits the substructure.

Benefits of Global Constraints

• Modelling benefits

- Reduce the gap between the problem statement and the model.
- May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).
- Solving benefits
	- Strong inference in propagation (operational).
	- Efficient propagation (algorithmic).