PART II: Constraint Propagation & Global Constraints

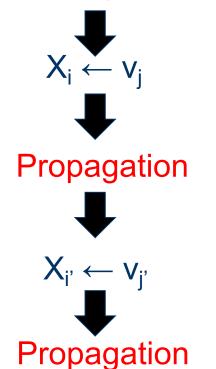
Constraint Solver

- Enumerates all possible variable-value combinations via a systematic backtracking tree search.
 - Guesses a value for each variable.
- During search, examines the constraints to remove incompatible (inconsistent) values from the domains of the future (unexplored) variables, via propagation.
 - Shrinks the domains of the future variables.

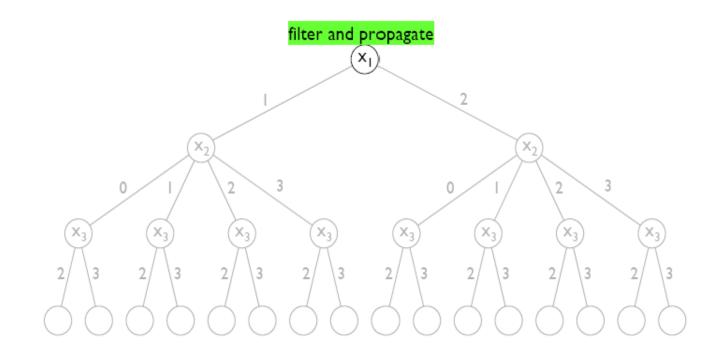
Search and Propagation

• Search decisions and propagation are interleaved.

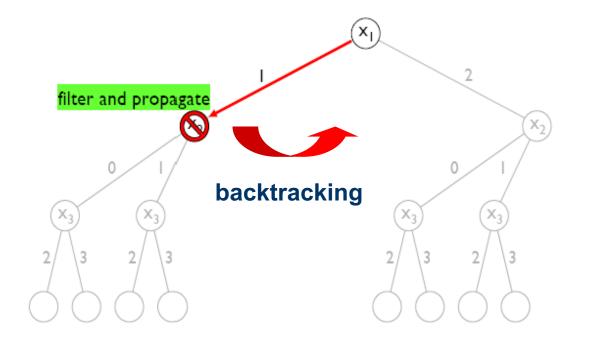
Propagation



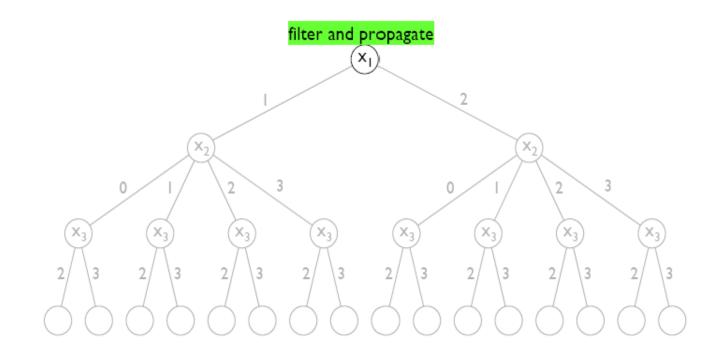
- $X_1 \in \{1,2\} \ X_2 \in \{0,1,2,3\} \ X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different([X_1, X_2, X_3])



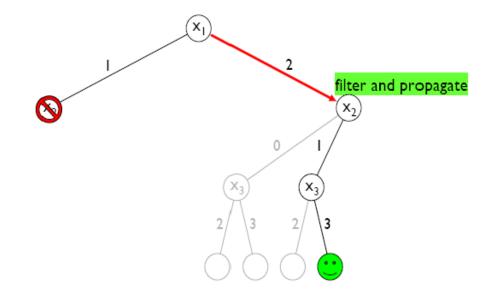
- $X_1 = 1, X_2 \in \{0, 1\}, X_3 \in \{2, 3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different([X_1, X_2, X_3])



- $X_1 \in \{1,2\} \ X_2 \in \{0,1,2,3\} \ X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different([X_1, X_2, X_3])



- $X_1 = 2 \ X_2 \in \{0,1\} \ X_3 \in \{2,3\}$
- $X_1 > X_2$ and $X_1 + X_2 = X_3$ and all different([X_1, X_2, X_3])



Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
- Global Constraints for Generic Purposes

Local Consistency

- A form of inference which detects inconsistent partial assignments.
 - Local, because we examine individual constraints.
- Popular local consistencies are domain-based:
 - Generalized Arc Consistency (GAC).
 - Also referred to as Hyper-arc or Domain Consistency;
 - Bounds Consistency (BC).
 - They detect inconsistent partial assignments of the form X_i = j, hence:
 - j can be removed from D(X_i) via propagation;
 - propagation can be implemented easily.

Generalized Arc Consistency (GAC)

- A constraint C defined on k variables C(X₁,..., X_k) gives the set of allowed combinations of values (i.e. allowed tuples).
 - $\ \ C \subseteq D(X_1) \ x \ \dots \ x \ D(X_k)$

- E.g., $D(X_1) = \{0,1\}, D(X_2) = \{1,2\}, D(X_3) = \{2,3\}$ C: $X_1 + X_2 = X_3$

 $C(X_1, X_2, X_3) = \{(0, 2, 2), (1, 1, 2), (1, 2, 3)\}$

Each allowed tuple $(d_1,...,d_k) \in C$ where $d_i \in X_i$ is a support for C.

GAC

- $C(X_1, ..., X_k)$ is GAC iff:
 - for all X_i in {X1,..., Xk}, for all $v \in D(X_i)$, v belongs to a support for C.
- Called Arc Consistency (AC) when k = 2.
- A CSP is GAC iff all its constraints are GAC.

- $D(X_1) = \{1,2,3\}, D(X_2) = \{2,3,4\}, C: X_1 = X_2$
 - AC(C)?
 - $1 \in D(X_1)$ and $4 \in D(X_2)$ do not have a support.
 - $X_1 = 1$ and $X_2 = 4$ are inconsistent partial assignments.
- $D(X_1) = \{1,2,3\}, D(X_2) = \{1,2\}, D(X_3) = \{1,2\}, C: all different([X_1, X_2, X_3])$
 - GAC(C)?
 - $1 \in D(X_1)$ and $2 \in D(X_1)$ do not have support.
 - $X_1 = 1$ and $X_1 = 2$ are inconsistent partial assignments.

Bounds Consistency (BC)

- Defined for totally ordered (e.g. integer) domains.
- Relaxes the domain of X_i from $D(X_i)$ to $[min(X_i)..max(X_i)]$.

- E.g., $D(X_i) = \{1,3,5\} \rightarrow [1..5]$

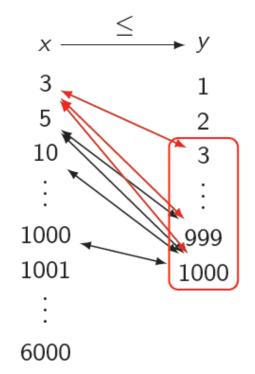
- A bound support is a tuple $(d_1,...,d_k) \in C$ where $d_i \in [min(X_i)..max(Xi)]$.
- $C(X_1,...,X_k)$ is BC iff:
 - For all X_i in {X₁,..., X_k}, min(X_i) and max(X_i) belong to a bound support.

BC

• Disadvantage

- BC might not detect all GAC inconsistencies in general.
 - We need to search more.
- Advantages
 - Might be easier to look for a support in a range than in a domain.
 - Achieving BC is often cheaper than achieving GAC.
 - Of interest in arithmetic constraints defined on integer variables with large domains.
 - Achieving BC is enough to achieve GAC for monotonic constraints.

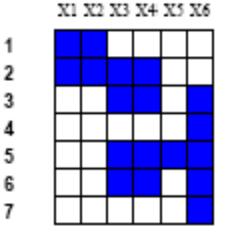
GAC = BC



- All values of D(X) ≤ max(Y) are GAC.
- All values of D(Y) ≥ min(X) are GAC.
- Enough to adjust max(X) and min(Y).
 - $\max(X) \le \max(Y)$
 - $\min(X) \le \min(Y)$

GAC > BC

- $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, X_5 = 5, D(X_6) = \{3,4,5,6,7\}, all different([X_1, X_2, X_3, X_4, X_5, X_6])$
- Only $2 \in D(X_3)$ and $2 \in D(X_4)$ have no BC support.



X1 X2 X3 X4 X5 X6

1

2

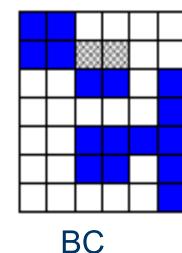
3

4

5

6

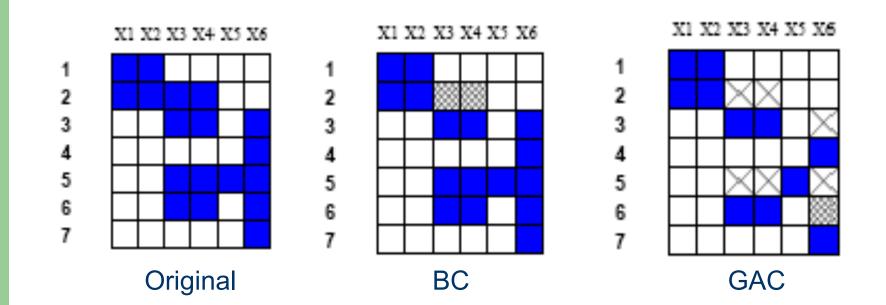
7



Original

GAC > BC

- $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, X_5 = 5, D(X_6) = \{3,4,5,6,7\}, all different([X_1, X_2, X_3, X_4, X_5, X_6])$
- $\{2,5\} \in D(X_3)$, $\{2,5\} \in D(X_4)$, $\{3,5,6\} \in D(X_6)$ have no GAC support.



Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
- Global Constraints for Generic Purposes

Constraint Propagation

- Can appear under different names:
 - constraint relaxation
 - filtering
 - local consistency enforcing, ...
- A local consistency notion defines properties that a constraint C must satisfy after constraint propagation.
 - The operational behaviour is completely left open.
 - We can develop different algorithms with different complexities to achieve the same effect.
 - The only requirement is to achieve the required property on C.

Propagation Algorithms

- A propagation algorithm achieves a certain level of consistency on a constraint C by removing the inconsistent values from the domains of the variables in C.
- The level of consistency depends on **C**.
 - GAC if an efficient propagation algorithm can be developed.
 - Otherwise BC or a lower level of consistency.

Propagation Algorithms

- When solving a CSP with multiple constraints:
 - propagation algorithms interact;
 - a propagation algorithm can wake up an already propagated constraint to be propagated again!
 - in the end, propagation reaches a fixed-point and all constraints reach a level of consistency;
 - the whole process is referred as constraint propagation.

- $D(X_1) = D(X_2) = D(X_3) = \{1,2,3\}$ C_1 : all different([X₁, X₂, X₃]) C_2 : X₂ < 3 C_3 : X₃ < 3
- Let's assume:
 - the order of propagation is C₁, C₂, C₃;
 - propagation algorithms maintain (G)AC.
- Propagation of C₁:
 - nothing happens, C_1 is GAC.
- Propagation of C₂:
 - 3 is removed from $D(X_2)$, C_2 is now AC.
- Propagation of C₃:
 - 3 is removed from $D(X_3)$, C_3 is now AC.
- C_1 is not GAC anymore, because the supports of $\{1,2\} \in D(X_1)$ in $D(X_2)$ and $D(X_3)$ are removed by the propagation of C_2 and C_3 .
- Re-propagation of C₁:
 - 1 and 2 are removed from $D(X_1)$, C_1 is now AC.

Properties of Propagation Algorithms

- It may not be enough to remove inconsistent values from domains once.
- A propagation algorithm must wake up again when necessary, otherwise may not achieve the desired local consistency property.
- Events that can trigger a constraint propagation:
 - when the domain of a variable changes (for GAC);
 - when the domain bounds of a variable changes (for BC);
 - when a variable is assigned a value;

- ...

Complexity of Propagation Algorithms

- Assume $|D(X_i)| = d$.
- Following the definition of the local consistency property:
 - one time AC propagation on a $C(X_1, X_2)$ takes $O(d^2)$ time.
- We can do better!

- **C**: X₁ = X₂
 - D(X₁) = D(X₂) = D(X₁) ∩ D(X₂)
 - Complexity: the cost of the set intersection operation
- C: $X_1 \neq X_2$
 - When $D(X_i) = \{v\}$, remove v from $D(X_j)$.
 - Complexity: O(1)
- **C**: X₁ ≤ X₂
 - $\max(X_1) \le \max(X_2), \min(X_1) \le \min(X_2)$
 - Complexity: O(1)

Outline

- Local Consistency
 - Generalized Arc Consistency (GAC)
 - Bounds Consistency (BC)
- Constraint Propagation
 - Propagation Algorithms
- Specialized Propagation
 - Global Constraints
 - Decompositions
 - Ad-hoc Algorithms
- Global Constraints for Generic Purposes

Specialized Propagation

- Propagation specific to a given constraint.
- Advantages
 - Exploits the constraint semantics.
 - Potentially much more efficient than a general propagation approach.

Specialized BC Propagation

- **C**: $X_1 = X_2 + X_3$
- Observation
 - $min(X_1)$ cannot be smaller than $min(X_2) + min(X_3)$.
 - $max(X_1)$ cannot be larger than $max(X_2) + max(X_3)$.
 - min(X_2) cannot be smaller than min(X_1) max(X_3).
 - $max(X_2)$ cannot be larger than $max(X_1)$ $min(X_3)$.
 - X_3 analogous to X_2 .
- BC propagation rules
 - $max(X_1) \le max(X_2) + max(X_3), min(X_1) \ge min(X_2) + min(X_3)$
 - $max(X_2) \le max(X_1) min(X_3), min(X_2) \ge min(X_1) max(X_3)$
 - Similarly for X₃

•
$$D(X_1) = [4,9], D(X_2) = [3,5], D(X_3) = [2,3]$$

C: $X_1 = X_2 + X_3$

•
$$D(X_1) = [5,8], D(X_2) = [3,5], D(X_3) = [2,3]$$

C: $X_1 = X_2 + X_3$

- Propagation
 - $max(X_1) ≤ max(X_2) + max(X_3), min(X_1) ≥ min(X_2) + min(X_3)$

•
$$D(X_1) = [5,8], D(X_2) = [3,5], D(X_3) = [2,3]$$

C: $X_1 = X_2 + X_3$

- Propagation
 - $max(X_1) ≤ max(X_2) + max(X_3), min(X_1) ≥ min(X_2) + min(X_3)$
 - $max(X_2) ≤ max(X_1) min(X_3), min(X_2) ≥ min(X_1) max(X_3)$
 - Similarly for X₃

•
$$X_1 = 5$$
, $D(X_2) = [3,5]$, $D(X_3) = [2,3]$
C: $X_1 = X_2 + X_3$

- Propagation
 - $max(X_1) ≤ max(X_2) + max(X_3), min(X_1) ≥ min(X_2) + min(X_3)$
 - $max(X_2) ≤ max(X_1) min(X_3), min(X_2) ≥ min(X_1) max(X_3)$
 - Similarly for X₃

•
$$X_1 = 5$$
, $D(X_2) = [3]$, $D(X_3) = [2]$
C: $X_1 = X_2 + X_3$

- Propagation
 - $max(X_1) ≤ max(X_2) + max(X_3), min(X_1) ≥ min(X_2) + min(X_3)$
 - $max(X_2) ≤ max(X_1) min(X_3), min(X_2) ≥ min(X_1) max(X_3)$
 - Similarly for X₃

Specialized Propagation

- Propagation specific to a given constraint.
- Advantages
 - Exploits the constraint semantics.
 - Potentially much more efficient than a general propagation approach.
- Disadvantages
 - Limited use.
 - Not always easy to develop one.
- Worth developing for recurring constraints.

Global Constraints

- Capture complex, non-binary and recurring combinatorial substructures arising in a variety of applications.
- Embed specialized propagation which exploits the substructure.

Benefits of Global Constraints

Modelling benefits

- Reduce the gap between the problem statement and the model.
- May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).
- Solving benefits
 - Strong inference in propagation (operational).
 - Efficient propagation (algorithmic).