
PART II: Constraint Propagation & 
Global Constraints 



Constraint Solver

l Enumerates all possible variable-value 
combinations via a systematic backtracking 
tree search.
– Guesses a value for each variable.

l During search, examines the constraints to 
remove incompatible (inconsistent) values
from the domains of the future (unexplored) 
variables, via propagation.
– Shrinks the domains of the future variables. 



Search and Propagation 

l Search decisions and propagation are interleaved.
Propagation

Propagation  

Xi’ ← vj’

Xi ← vj

Propagation



Backtracking Tree Search & Propagation

l X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3}
l X1 > X2 and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])



Backtracking Tree Search & Propagation

l X1 = 1,  X2 ∈ {0,1}  X3 ∈ {2,3}
l X1 > X2 and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])

backtracking



l X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3}
l X1 > X2 and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])

Backtracking Tree Search & Propagation



Backtracking Tree Search & Propagation

l X1 = 2  X2 ∈ {0,1}  X3 ∈ {2,3}
l X1 > X2 and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])



Outline

l Local Consistency
– Generalized Arc Consistency (GAC)
– Bounds Consistency (BC)

l Constraint Propagation
– Propagation Algorithms

l Specialized Propagation 
– Global Constraints

l Global Constraints for Generic Purposes



Local Consistency

l A form of inference which detects inconsistent partial 
assignments.
– Local, because we examine individual constraints.

l Popular local consistencies are domain-based:
– Generalized Arc Consistency (GAC).

l Also referred to as Hyper-arc or Domain Consistency;
– Bounds Consistency (BC).
– They detect inconsistent partial assignments of the form Xi = j, 

hence:
l j can be removed from D(Xi) via propagation;
l propagation can be implemented easily.



Generalized Arc Consistency (GAC)

l A constraint C defined on k variables C(X1,…, Xk)
gives the set of allowed combinations of values (i.e. 
allowed tuples).  
– C Í D(X1) x … x D(Xk)
– E.g., D(X1) = {0,1}, D(X2) = {1,2}, D(X3) = {2,3} C: X1 + X2 = X3

C(X1,X2,X3) = {(0,2,2), (1,1,2), (1,2,3)}

Each allowed tuple (d1,…,dk) ∈ C where di ∈ Xi is a support for C.



GAC

l C(X1,…, Xk) is GAC iff:
– for all Xi in {X1,…, Xk}, for all v ∈ D(Xi), v belongs to a 

support for C. 
l Called Arc Consistency (AC) when k = 2. 
l A CSP is GAC iff all its constraints are GAC.



Examples

l D(X1) = {1,2,3}, D(X2) = {2,3,4}, C: X1 = X2
– AC(C)?

l 1 ∈ D(X1) and 4 ∈ D(X2)  do not have a support. 
l X1 = 1 and X2 = 4 are inconsistent partial assignments.

l D(X1) = {1,2,3}, D(X2) = {1,2}, D(X3) = {1,2},                      
C: alldifferent([X1, X2, X3])
– GAC(C)?

l 1 ∈ D(X1) and 2 ∈ D(X1) do not have support.
l X1 = 1 and X1 = 2 are inconsistent partial assignments.



Bounds Consistency (BC)

l Defined for totally ordered (e.g. integer) domains.
l Relaxes the domain of Xi from D(Xi) to [min(Xi)..max(Xi)].

– E.g., D(Xi) = {1,3,5} à [1..5]

l A bound support is a tuple (d1,…,dk) ∈ C where di ∈
[min(Xi)..max(Xi)].

l C(X1,…, Xk)  is BC iff:
– For all Xi in {X1,…, Xk}, min(Xi) and max(Xi) belong to a bound 

support. 



BC

l Disadvantage 
– BC might not detect all GAC inconsistencies in general.

l We need to search more. 

l Advantages
– Might be easier to look for a support in a range than in a domain.
– Achieving BC is often cheaper than achieving GAC.

l Of interest in arithmetic constraints defined on integer variables with 
large domains. 

– Achieving BC is enough to achieve GAC for monotonic 
constraints.



GAC = BC

l All values of D(X) ≤ max(Y) are 
GAC.

l All values of D(Y) ≥ min(X) are 
GAC.

l Enough to adjust max(X) and 
min(Y). 
– max(X) ≤ max(Y) 
– min(X) ≤ min(Y)



GAC > BC

l D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, X5 = 5, D(X6) = 
{3,4,5,6,7}, alldifferent([X1, X2 , X3 , X4 , X5 , X6 ])

l Only 2 ∈ D(X3) and 2 ∈ D(X4) have no BC support.

Original BC



GAC > BC

l D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, X5 = 5, D(X6) = 
{3,4,5,6,7}, alldifferent([X1, X2 , X3 , X4 , X5 , X6 ])

l {2,5} ∈ D(X3) , {2,5} ∈ D(X4), {3,5,6} ∈ D(X6) have no GAC support.

Original BC GAC 



Outline

l Local Consistency
– Generalized Arc Consistency (GAC)
– Bounds Consistency (BC)

l Constraint Propagation
– Propagation Algorithms

l Specialized Propagation 
– Global Constraints

l Global Constraints for Generic Purposes



Constraint Propagation

l Can appear under different names:
– constraint relaxation
– filtering
– local consistency enforcing, …

l A local consistency notion defines properties that a 
constraint C must satisfy after constraint propagation.
– The operational behaviour is completely left open.
– We can develop different algorithms with different complexities to 

achieve the same effect.
– The only requirement is to achieve the required property on C.



Propagation Algorithms

l A propagation algorithm achieves a certain level of 
consistency on a constraint C by removing the 
inconsistent values from the domains of the variables      
in C. 

l The level of consistency depends on C.
– GAC if an efficient propagation algorithm can be developed. 
– Otherwise BC or a lower level of consistency.



l When solving a CSP with multiple constraints:
– propagation algorithms interact;
– a propagation algorithm can wake up an already 

propagated constraint to be propagated again!
– in the end, propagation reaches a fixed-point and all 

constraints reach a level of consistency;
– the whole process is referred as constraint 

propagation.

Propagation Algorithms



Example

l D(X1) = D(X2) = D(X3)= {1,2,3}
C1: alldifferent([X1, X2 , X3 ]) C2: X2 < 3  C3: X3 < 3

l Let’s assume: 
– the order of propagation is C1, C2, C3;
– propagation algorithms maintain (G)AC.

l Propagation of C1: 
– nothing happens, C1 is GAC.

l Propagation of C2:
– 3 is removed from D(X2), C2 is now AC.

l Propagation of C3: 
– 3 is removed from D(X3), C3 is now AC.

l C1 is not GAC anymore, because the supports of {1,2} ∈ D(X1) in 
D(X2) and D(X3) are removed by the propagation of C2 and C3.

l Re-propagation of C1: 
– 1 and 2 are removed from D(X1), C1 is now AC.



Properties of Propagation Algorithms

l It may not be enough to remove inconsistent values from 
domains once.

l A propagation algorithm must wake up again when 
necessary, otherwise may not achieve the desired local 
consistency property.

l Events that can trigger a constraint propagation:
– when the domain of a variable changes (for GAC);
– when the domain bounds of a variable changes (for BC);
– when a variable is assigned a value;
– …



Complexity of Propagation Algorithms

l Assume |D(Xi)| = d. 
l Following the definition of the local consistency 

property: 
– one time AC propagation on a C(X1,X2) takes           

O(d2) time. 
l We can do better!



Examples

l C: X1 = X2
– D(X1) = D(X2) = D(X1) ∩ D(X2) 
– Complexity: the cost of the set intersection 

operation
l C: X1 ≠ X2

– When D(Xi) = {v},  remove v from D(Xj).
– Complexity: O(1) 

l C: X1 ≤ X2
– max(X1) ≤ max(X2), min(X1) ≤ min(X2)

– Complexity: O(1) 



Outline

l Local Consistency
– Generalized Arc Consistency (GAC)
– Bounds Consistency (BC)

l Constraint Propagation
– Propagation Algorithms

l Specialized Propagation 
– Global Constraints

l Decompositions
l Ad-hoc Algorithms

l Global Constraints for Generic Purposes



Specialized Propagation

l Propagation specific to a given constraint.
l Advantages

– Exploits the constraint semantics.
– Potentially much more efficient than a general 

propagation approach. 



Specialized BC Propagation 

l C: X1 = X2 + X3

l Observation
– min(X1)  cannot be smaller than min(X2) + min(X3).
– max(X1)  cannot be larger than max(X2) + max(X3).  
– min(X2)   cannot be smaller than min(X1) - max(X3).  
– max(X2)  cannot be larger than max(X1) - min(X3).  
– X3 analogous to X2.  

l BC propagation rules
– max(X1) ≤ max(X2) + max(X3), min(X1) ≥ min(X2) + min(X3)                    
– max(X2) ≤ max(X1) - min(X3),  min(X2) ≥ min(X1) - max(X3)
– Similarly for X3



Example

l D(X1) = [4,9], D(X2) = [3,5], D(X3) = [2,3] 
C: X1 = X2 + X3



Example

l D(X1) = [5,8], D(X2) = [3,5], D(X3) = [2,3] 
C: X1 = X2 + X3

l Propagation 
– max(X1) ≤ max(X2) + max(X3), min(X1)  ≥  min(X2) + min(X3)



Example

l D(X1) = [5,8], D(X2) = [3,5], D(X3) = [2,3] 
C: X1 = X2 + X3

l Propagation 
– max(X1) ≤ max(X2) + max(X3), min(X1)  ≥  min(X2) + min(X3)
– max(X2) ≤  max(X1) - min(X3), min(X2) ≥   min(X1) - max(X3)
– Similarly for X3



Example

l X1 = 5, D(X2) = [3,5], D(X3) = [2,3] 
C: X1 = X2 + X3

l Propagation 
– max(X1) ≤ max(X2) + max(X3), min(X1)  ≥  min(X2) + min(X3)
– max(X2) ≤  max(X1) - min(X3), min(X2) ≥   min(X1) - max(X3)
– Similarly for X3



Example

l X1 = 5, D(X2) = [3], D(X3) = [2] 
C: X1 = X2 + X3

l Propagation 
– max(X1) ≤ max(X2) + max(X3), min(X1)  ≥  min(X2) + min(X3)
– max(X2) ≤  max(X1) - min(X3), min(X2) ≥   min(X1) - max(X3)
– Similarly for X3



Specialized Propagation

l Propagation specific to a given constraint.
l Advantages

– Exploits the constraint semantics.
– Potentially much more efficient than a general 

propagation approach.
l Disadvantages

– Limited use.
– Not always easy to develop one.

l Worth developing for recurring constraints.



Global Constraints

l Capture complex, non-binary and recurring
combinatorial substructures arising in a 
variety of applications.

l Embed specialized propagation which 
exploits the substructure. 



Benefits of Global Constraints

l Modelling benefits
– Reduce the gap between the problem statement 

and the model.
– May allow the expression of constraints that are 

otherwise not possible to state using primitive 
constraints (semantic).

l Solving benefits
– Strong inference in propagation (operational).
– Efficient propagation (algorithmic).


