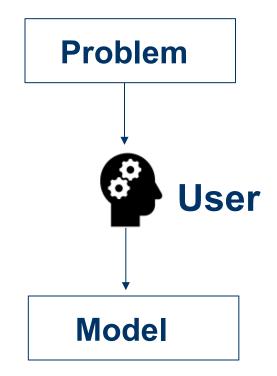
PART I: Modeling

Modeling in CP

- User models a decision problem by formalizing:
 - the unknowns of the decision \rightarrow decision variables (X_i).
 - possible values for unknowns → domains (D(X_i) = { v_j }).
 - relations between the unknowns \rightarrow constraints (r(X_i, X_i)).



Formalization as a Constraint Satisfaction Problem (CSP)

- A CSP is a triple **<X,D,C>** where:
 - X is a set of decision variables $\{X_1, ..., X_n\}$;
 - **D** is a set of domains $\{D_1, \dots, D_n\}$ for **X**:
 - D_i is a set of possible values for X_i;
 - usually non-binary and assume finite domain;
 - **C** is a set of constraints $\{C_1, \ldots, C_m\}$:
 - C_i is a relation over X_j,...,X_k, denoted as C_i(X_j, ..., X_k);
 - C_i the set of combination of allowed values $C_i \subseteq D(X_j) \times ... \times D(X_k)$.
- A solution to a CSP is an assignment of values to the variables which satisfies (that is feasible for) all constraints simultaneously.

Constraint Optimization Problems

- CSP enhanced with an optimization criterion, e.g.:
 - minimum cost;
 - shortest distance;
 - fastest route;
 - maximum profit.
- Formally, <X,D,C,f> where f is the formalization of the optimization criterion as an objective variable. Goal: minimize f (maximize –f).

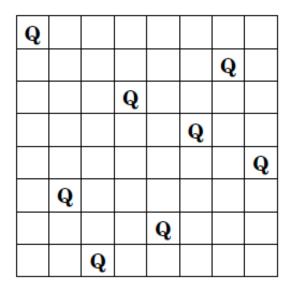
Simple Examples

- Variables $X = \{X_1, X_2\}$
- Domains
 D(X₁) = [1..3], D(X₂) = [1..3]
- Constraints
 - $C_1(X_1, X_2) = \{(1,2), (1,3), (2,3)\}$
 - $C_2(X_1, X_2) = \{(1,2), (2,3)\}$
- Solutions
 - $X_1 = 1, X_2 = 2$ $X_1 = 2, X_2 = 3$

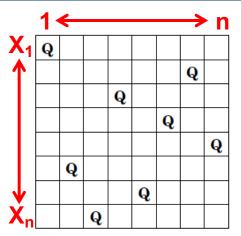
- Variables
 X = {X₁, X₂, X₃}
- Domains
 - $D(X_1) = D(X_2) = D(X_3) = \{1, 3, 5\}$
- Constraints
 - $X_1 + X_2 \le X_3$
 - all different ($[X_1, X_2, X_3]$)
- Solutions
 - $X_1 = 1, X_2 = 3, X_3 = 5$ $X_1 = 3, X_2 = 1, X_3 = 5$

N-Queens

 Place n queens in an nxn board so that no two queens can attack each other.



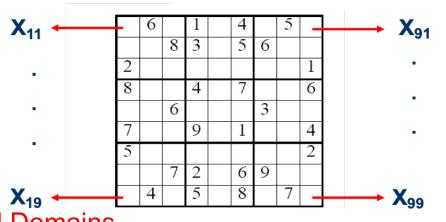
N-Queens



- Variables and Domains
 - A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
 - Domain values [1..n] represent the columns: _
 - X_i = j means that the queen in row i is in column j
- Constraints
 - alldifferent($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
 - for all i<j $|X_i X_j| \neq |i j|$ \rightarrow no diagonal attack

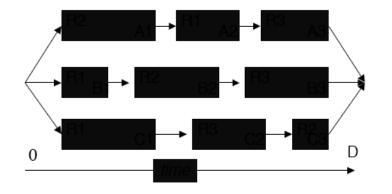
	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

Sudoku



- Variables and Domains
 - 9x9 variables X_{ij} for each cell with domains [1..9].
 - $X_{ij} = k$ means that the cell X_{ij} has the value k.
- Constraints
 - Initial assignments. E.g., $X_{21} = 6$.
 - $\begin{array}{l} & \text{Difference constraints on all the rows, columns, and 3x3 boxes. E.g.,} \\ & \text{alldifferent}([X_{11}, X_{21}, X_{31}, ..., X_{91}]) \\ & \text{alldifferent}([X_{11}, X_{12}, X_{13}, ..., X_{19}]) \\ & \text{alldifferent}([X_{11}, X_{21}, X_{31}, X_{12}, X_{22}, X_{32}, X_{13}, X_{23}, X_{33}]) \end{array}$

Task Scheduling



- Schedule n tasks on a machine, in time D, by obeying the temporal and precedence constraints:
 - each task t_i has a specific fixed processing time p_i;
 - each task t_i can be started after its release date r_i, and must be completed before its deadline d_i;
 - tasks cannot overlap in time;
 - precedence relations (\rightarrow) must be respected.

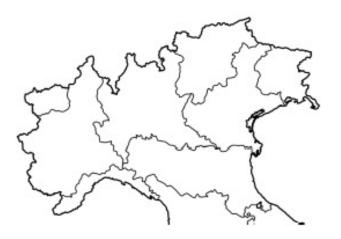
Task Scheduling

Variables and Domains

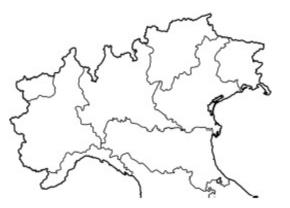
- Start_i, representing the starting time of a task t_i, taking a value from [0..D].
- Ensures that each task starts at exactly one time point.
- Constraints
 - Respect of release date and deadline
 - for all $i \in [1..n]$, $r_i \leq Start_i \leq d_i p_i$
 - No overlap in time
 - for all $i < j \in \{1, ..., n\}$, (Start_i + p_i ≤ Start_j) ∨ (Start_j + p_j ≤ Start_i)
 - Precedence constraints
 - Start_i + $p_i \leq Start_j$ for each pair of tasks $t_i \rightarrow t_j$

Optimal Map Colouring

• What is the minimum number of colours necessary to colour the neighbouring regions differently?



Optimal Map Colouring



- Variables and Domains
 - X_i for each of n regions with domain [1..n].
- Constraints
 - $X_i \neq X_j$ for each neighbour region i and j
- Objective variable
 - $f = max(X_i)$
- Objective: minimize f

Variables and Domains

- Variable domains include the classical:
 - binary, integer, continuous.
- In addition, variables may take a value from *any* finite set.
 - e.g., X in {a,b,c,d,e}.
- There exist special "structured" variable types.
 - Set variables (take a set of elements as value).
 - Activities or interval variables (for scheduling applications).

Constraints

- Any kind of constraint can be expressed by listing all allowed combinations.
 - $C(X_1, X_2) = \{(0,0), (0,2), (1,3), (2,1)\}$
 - Extensional representation.
 - General but possibly inconvenient and inefficient with large domains.
- Declarative (invariant) relations among objects.
 - X > Y
 - Intensional representation.
 - More compact, clear but less general.

Properties of Constraints

- The order of imposition does not matter.
 - X + Y <= Z, Z >= X + Y
- Non-directional.
 - A constraint between X and Y can be used to infer domain information on Y given domain information on X and vice versa.
- Rarely independent.
 - Shared variables as communication mechanism between different constraints.

Constraints – Examples

- Algebraic expressions
 - $-X_1 > X_2$
 - $X_1 + X_2 = X_3$
- Extensional constraints (table constraints)
 - (X,Y,Z) in {(a, a, a), (b, b, b), (c, c, c)}
- Variables as subscripts (element constraints)
 - Y = cost[X] (here Y and X are variables, 'cost' is an array of parameters)

Constraints – Examples

- Logical relations
 - $(X < Y) ∨ (Y < Z) \rightarrow C$
- Global constraints
 - alldifferent([X₁, X₂, X₃]) instead of:

 $X_1 \neq X_2, X_1 \neq X_3, X_2 \neq X_3$

- noOverlap([Start₁, ..., Start_n], [p₁, ..., p_n]) instead of: for all i < j ∈ {1, ..., n}, (Start_i + p_i ≤ Start_j) ∨ (Start_j + p_j ≤ Start_i)
- Meta-constraints
 - $-\sum_{i} (X_i > t_i) \le 5$

Modeling is Critical!

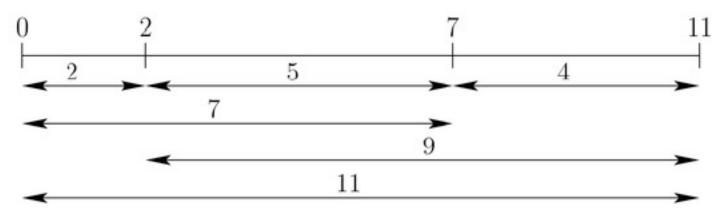
- Choice of variables and domains defines the search space size.
 - $|D(X_1)| \times |D(X_2)| \times ... \times |D(X_n)|$
 - Exponential in size!
- Choice of constraints defines:
 - how search space can be reduced;
 - how search can be guided.
- Need to go beyond the declarative specification!

Modeling is Critical

- Given the human understanding of a problem, we need to answer questions like:
 - which variables shall I choose?
 - which constraints shall I enforce?
 - can I exploit any global constraints?
 - do I need any auxiliary variables?
 - are some constraints redundant, therefore can be avoided?
 - are there any implied constraints?
 - can symmetry be eliminated?
 - are there any dual viewpoints?
 - among alternative models, which one shall I prefer?

Golomb Ruler

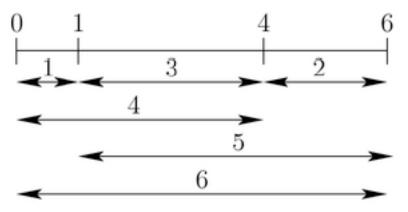
- Place m marks on a ruler such that:
 - distance between each pair of marks is different;
 - the length of the ruler is minimum.
- Applications in radio astronomy and information theory.
- Difficult to solve! Largest known ruler is of order 28.



A non optimal Golomb ruler of order 4.

Golomb Ruler

- Place m marks on a ruler such that:
 - distance between each pair of marks is different;
 - the length of the ruler is minimum.
- Applications in radio astronomy and information theory.
- Difficult to solve! Largest known ruler is of order 28.



An optimal Golomb ruler of order 4.

Naive Model

- Variables and Domains
 - $\ [X_1, \, X_2, \, .., \, X_m]$
 - X_i , representing the position of the ith mark, taking a value from $\{0, 1, \dots, 2^{(m-1)}\}$

Naive Model

- Variables and Domains
 - $[X_1, X_2, ..., X_m]$
 - X_i, representing the position of the ith mark, taking a value from {0,1,...,2^(m-1)}
- Constraints
 - $\text{ for all } i_1 < j_1, \ i_2 < j_2, \ i_1 \neq i_2 \text{ or } j_1 \neq j_2 \ |X_{i1} X_{j1}| \neq |X_{i2} X_{j2}|$
- Objective: minimize (max([X₁, X₂, .., X_m]))

Naive Model

- Variables and Domains
 - $[X_1, X_2, ..., X_m]$
 - X_i, representing the position of the ith mark, taking a value from {0,1,...,2^(m-1)}
- Constraints
 - $\text{ for all } i_1 < j_1, \ i_2 < j_2, \ i_1 \neq i_2 \text{ or } j_1 \neq j_2 \ |X_{i1} X_{j1}| \neq |X_{i2} X_{j2}|$
- Objective: minimize (max([X₁, X₂, .., X_m]))
- Problematic model.
 - O(m⁴) quaternary constraints.
 - Loose reduction in domains.

Better Model

• Auxiliary Variables

- New variables introduced into a model, because either:
 - it is difficult/impossible to express some constraints on the main decision variables;
 - or some constraints on the main decision variables do not lead to significant domain reductions.
- for all i<j D_{ij}, representing the distance between ith and the jth marks.
- Constraints
 - for all i<j, $D_{ij} = |X_i X_j|$
 - all different ($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)

Better Model

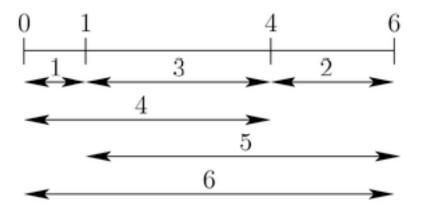
- Constraints
 - for all i<j $D_{ij} = |X_i X_j|$
 - all different ([$D_{12}, D_{13}, ..., D_{(m-1)m}$])
- Improvements
 - Quadratic O(m²) ternary constraints.
 - A global constraint.

Better Model

- Constraints
 - for all i<j $D_{ij} = |X_i X_j|$
 - alldifferent($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)
 - alldifferent([X₁, X₂, ..., X_m])
- Improvements
 - O(m²) ternary constraints.
 - A global constraint.
 - Implied constraint
 - Logically implied by the constraints of the problem which cannot be deduced by the solver.
 - Semantically redundant (no change in the set of solutions), computationally significant (can greatly reduce the search space)!

Improved Model

- Deducing information from Golomb Rulers of smaller order
 - If you consider any k consecutive marks of a Golomb Ruler of order n > k, they form a Golomb Ruler of order k.



An optimal Golomb ruler of order 4.

Improved Model

- Deducing information from Golomb Rulers of smaller order
 - If you consider any k consecutive marks of a Golomb Ruler of order n > k, they form a Golomb Ruler of order k.
 - Therefore, they must span over a distance at least as long as the optimal size of Rulers of order k.
 - for all i<j $D_{ij} \ge optimal value of the ruler of order (j-i+1)$

Symmetry in CSPs

- Creates many symmetrically equivalent search states:
 - A state leading to a solution/failure will have many symmetrically equivalent states.
- Bad when proving optimality, infeasibility or looking for all solutions.
 - May lead to thrashing.
- Variable and value symmetry.

Symmetries and Permutation

Permutation

- Defined over a discrete set S as a 1-1 function $\pi: S \to S$.
- Intuitively: re-arrangement of a set of elements, e.g.,
 - i: 1 2 3 4 5
 - π(i): 35421
- Variable Symmetry
 - A permutation π of the variable indices s.t. for each (un)feasible (partial) assignment, we can re-arrange the variables according to π and obtain another (un)feasible (partial) assignment.
 - Intuitively: permuting variable assignments.
 - $-\pi$ identifies a specific symmetry.

Variable Symmetries in Golomb Ruler

• Permuting variable assignments

$$X_1 = 0, X_2 = 1, X_3 = 4, X_4 = 6$$

 $X_1 = 0, X_2 = 1, X_3 = 6, X_4 = 4$
 $X_1 = 0, X_2 = 4, X_3 = 1, X_4 = 6$
 $X_1 = 0, X_2 = 4, X_3 = 6, X_4 = 1$
 $X_1 = 0, X_2 = 6, X_3 = 1, X_4 = 4$
 $X_1 = 0, X_2 = 6, X_3 = 4, X_4 = 1$

. . .

- m! permutations \rightarrow m! variable symmetries
- For a given (un)feasible assignment, there are m! (un)feasible assignments.

Value Symmetry

• Value Symmetry

- A permutation π of values s.t. for each (un)feasible (partial) assignment, we can re-arrange the values according to π and obtain another (un) feasible (partial) assignment.
- Intuitively: permuting values.
- $-\pi$ identifies a specific symmetry.

A Value Symmetry in Golomb Ruler

Values can be permuted as:
 0 → 0, 1 → 2, 2 → 1, 3 → 3, 4 → 5, 5 → 4, 6 → 6 (reversing the ruler)

 $X_1 = 0, X_2 = 1, X_3 = 4, X_4 = 6 \rightarrow$ $X_1 = 0, X_2 = 2, X_3 = 5, X_4 = 6$

Any other value symmetry in the models we have seen so far?

Variable and Value Symmetry

- Composition of a variable and a value symmetry.
- Golomb Ruler
 - Both variable assignments and values can be permuted.
 X₁ = 0, X₂ = 1, X₃ = 4, X₄ = 6 → X₁ = 0, X₂ = 2, X₃ = 5, X₄ = 6
 → X₁ = 2, X₂ = 0, X₃ = 6, X₄ = 5
 - For a given (un)feasible assignment, there are 2*m! (un)feasible assignments.

Symmetry Breaking Constraints

- Reduce the set of solutions and search space!
- Not logically implied by the constraints of the problem.
- Common technique: impose an ordering to avoid permutations.
 - E.g., $X_1 \leq X_2 \dots \leq X_n$ when $[X_{1,} X_{2, \dots,} X_n]$ are all symmetric.
- Attention: at least one solution from each set of symmetrically equivalent solutions must remain.

Improved Model

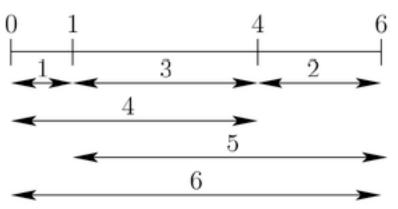
- Symmetry Breaking Constraints
 - $X_1 < X_2 < ... < X_m$
 - $-X_1 = 0$
 - $D_{12} < D_{(m-1)m}$
- New Objective
 - minimize (X_m)

Improved Model

- Symmetry breaking constraints enable constraint simplification.
 - $X_1 < X_2 < ... < X_m$
 - alldifferent([X₁, X₂, ..., X_m]) becomes redundant (semantically and computationally).
 - for all i<j, $D_{ij} = |X_i X_j|$ becomes for all i<j, $D_{ij} = X_j X_i$
 - Note the terminology redundant vs implied.

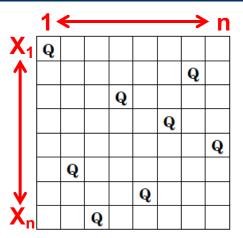
Improved Model

- Symmetry breaking constraints enable additional implied constraints.
 - $\begin{array}{ll} & \mbox{for all } i < j < k, & D_{ij} < D_{ik} \mbox{ and } D_{jk} < D_{ik} \\ D_{ik} = D_{ij} \mbox{ + } D_{jk} \end{array}$



An optimal Golomb ruler of order 4.

Can We Improve This Model Too?



- Variables and Domains
 - A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
 - Domain values {1,...,n} represent the columns: _
 - X_i = j means that the queen in row i is in column j
- Constraints
 - all different ($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
 - for all i<j $|X_i X_i| \neq |i j|$ \rightarrow no diagonal attack

N-Queens

- Diagonal attack constraint
 - for all i<j $|X_i X_j| \neq |i j|$

≡ for all iX_i - X_j \neq i - j and
$$X_i - X_j \neq j - i$$
 and
 $X_j - X_i \neq i - j$ and $X_j - X_i \neq j - i$

- $\equiv \text{ for all } i < j X_i i \neq X_j j \text{ and } X_i + i \neq X_j + j$
- $\equiv \text{alldifferent}([X_1 1, X_2 2, ..., X_n n])$
- $\equiv \text{alldifferent}([X_1 + 1, X_2 + 2, ..., X_n + n])$

A Better Model

- Original Model
 - alldifferent([X₁, X₂, ..., X_n]) → no column attack
 - for all i<j $|X_i X_j| \neq |i j|$ → no diagonal attack
 - Alldiff Model
 - all different ($[X_1, X_2, ..., X_n]$)
 - all different ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
 - all different ($[X_1 1, X_2 2, ..., X_n n]$)

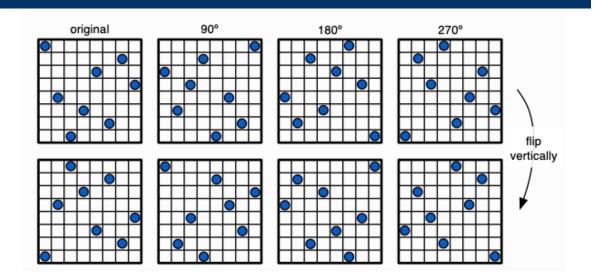
Modeling is Critical!

- Given the human understanding of a problem, we need to answer questions like:
 - which variables shall I choose?
 - which constraints shall I enforce?
 - can I exploit any global constraints?
 - do I need any auxiliary variables?
 - are some constraints redundant, therefore can be avoided?
 - are there any implied constraints?
 - can symmetry be eliminated?
 - are there any dual viewpoints?
 - among alternative models, which one shall I prefer?

Dual Viewpoint

- Viewing a problem P from different perspectives may result in different models for P.
- Each model yields the same set of solutions.
- Each model exhibits in general a different representation of P.
 - Different variables.
 - Different domains.
 - Different constraints.
 - Different size of the search space!
- Can be hard to decide which is better!

Symmetries of N-Queens



- Geometric symmetries.
 - Cannot impose an ordering like $X_1 \le X_2 \dots \le X_n$
 - We need to avoid certain 7 permutations of $[X_1, X_2, ..., X_n]$.
 - These permutations are difficult to define in the current model.

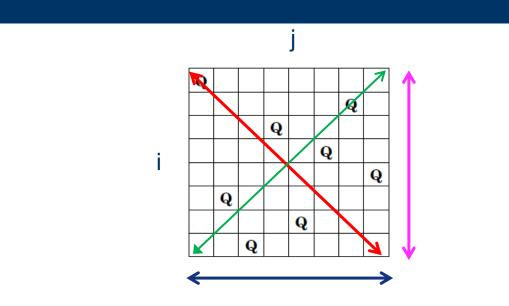
A Dual Model

- Variables and Domains
 - Represent the board with n x n Boolean variables $B_{ij} \in [0..1]$.
- Attacking Constraints
 - $\sum B_{ij} = 1$ on all rows and columns, $\sum B_{ij} \le 1$ on all diagonals.
- Symmetry Breaking Constraints
 - Flatten the 2-d matrix to a single sequence of variables.
 - E.g., append every row to the end of the first row.
 - Every symmetric configuration corresponds to a variable permutation of the original solution, which is easy to define.
 - Impose an order between the original solution and all the solutions obtained by the 7 permutations:
 - lex≤(B, π(B)) for all π.

Lexicographic Ordering Constraint

- Requires a sequence of variables to be lexicographically less than or equal to another sequence of variables.
- $|ex \leq ([Y_1, Y_2, ..., Y_k], [Z_1, Z_2, ..., Z_k]) \text{ holds iff:}$ $Y_1 \leq Z_1 \quad AND$ $(Y_1 = Z_1 \rightarrow Y_2 \leq Z_2) \quad AND$ $(Y_1 = Z_1 \quad AND \quad Y_2 = Z_2 \rightarrow Y_3 \leq Z_3) \dots$ $(Y_1 = Z_1 \quad AND \quad Y_2 = Z_2 \dots Y_{k-1} = Z_{k-1} \rightarrow Y_k \leq Z_k)$ $- |ex \leq ([1, 2, 4], [1, 3, 3])$

Symmetry Breaking in N-Queens



- lex≤(B, [B_{ji} | i, j ∈ [1..n]])
- lex≤(B, [B_{ij} | i ∈ [n..1], j ∈ [1..n]])
- lex≤(B, [B_{ji} | i, j ∈ [n..1]])
- lex≤(B, [B_{ij} | i ∈ [1..n], j ∈ [n..1]])

- i, j \rightarrow j,i
- i,j \rightarrow reverse i, j
- i,j \rightarrow reverse j, reverse i
- i,j \rightarrow i, reverse j
 - . . .

Symmetry Breaking in N-Queens

- lex≤(B, [B_{ji} | i, j ∈ [1..n]])
- $\text{lex} \le (B, [B_{ij} | i \in [n..1], j \in [1..n]])$
- lex≤(B, [B_{ji} | i ∈ [1..n], j ∈ [n..1]])
- lex≤(B, [B_{ij} | i ∈ [1..n], j ∈ [n..1]])
- $lex \le (B, [B_{ji} | i \in [n..1], j \in [1..n]])$
- lex≤(B, [B_{ij} | i, j ∈ [n..1]])
- lex≤(B, [B_{ji} | i, j ∈ [n..1]])

Which Model?

- Alldiff Model
 - $[X_1, X_2, ..., X_n] \in [1...n]$
 - all different ($[X_1, X_2, ..., X_n]$)
 - all different ($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
 - all different ($[X_1 1, X_2 2, ..., X_n n]$)
- Boolean Symmetry Breaking Model
 - n x n B_{ij} ∈ [0..1]
 - $\sum B_{ij} = 1$ on all rows, columns
 - $\sum B_{ij} \leq 1$ on diagonals
 - lex≤(B, π(B)) for all π

- © Easy symmetry breaking
- O global constraints

- © Global constraints
- ⊗ No easy symmetry breaking

Which Model?

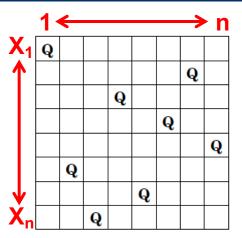
• Combined model

- If you can't beat them, combine them S
- Keep both models and use channeling constraints to maintain consistency between the variables of the two models.
- Benefits:
 - Facilitation of the expression of constraints.
 - Enhanced constraint propagation.
 - More options for search variables.

A Combined Model

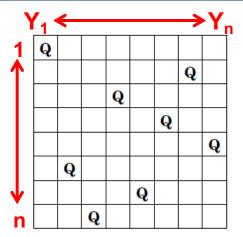
- Variables
 - for all i, $X_i \in [1..n]$, for all i, j $B_{ii} \in [0..1]$
- Constraints
- $= \operatorname{audifferent}([X_1 + 1, X_2 + 2, ..., X_n + n])$ $= \operatorname{alldifferent}([X_1 1, X_2 2, ..., X_n n])$ $= \operatorname{lex} \leq (B, \pi(B)) \text{ for all } \pi$ Channeling Constraints $= \operatorname{for all } i, j X_i = j \leftrightarrow B_{ij} = 1$ = 1
- Channeling Constraints

Dual Model of the Original Model?



- Variables and Domains
 - A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
 - Domain values [1..n] represent the columns: _
 - X_i = j means that the queen in row i is in column j
- Constraints
 - all different ($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
 - for all i<j $|X_i X_i| \neq |i j|$ \rightarrow no diagonal attack

Another Dual Model



Both viewpoints yield the same CSP!

Variables and Domains

- A variable for each column $[Y_1, Y_2, ..., Y_n] \rightarrow$ no column attack
- Domain values [1..n] represent the rows:
 - Y_i = j means that the queen in column i is in row j

Constraints

- alldifferent([$Y_1, Y_2, ..., Y_n$]) → no row attack
- for all i<j $|Y_i Y_j| \neq |i j|$ → no diagonal attack
- \rightarrow no row attack

Another Combined Model

- Variables
- it really useful? $- [X_1, X_2, ..., X_n], [Y_1, Y_2, ..., Y_n] \in [1...n]$
- Constraints
 - all different ($[X_1, X_2, ..., X_n]$)
 - all different ($[Y_1, Y_2, ..., Y_n]$)
 - for all i<j $|X_i X_i| \neq |i j|$
 - for all i<j $|Y_i Y_i| \neq |i j|$
- Channeling Constraints
 - for all i, j $X_i = j \leftrightarrow Y_i = i$

Another Combined Model

- Variables
- What about this? $- [X_1, X_2, ..., X_n], [Y_1, Y_2, ..., Y_n] \in [1...n]$
- Constraints
 - $\frac{\text{alldifferent}([X_1, X_2, \dots, X_n])}{(X_1, X_2, \dots, X_n]}$
 - all different ($[Y_1, Y_2, ..., Y_n]$)
 - for all i<j $|X_i X_i| \neq |i j|$
 - for all i<j $|Y_i Y_i| \neq |i j|$
- Channeling Constraints
 - for all i, j $X_i = j \leftrightarrow Y_i = i$

Another Combined Model

- Variables
 - $[X_1, X_2, ..., X_n], [Y_1, Y_2, ..., Y_n] \in [1...n]$ and this?
- Constraints
 - $\frac{\text{alldifferent}([X_1, X_2, \dots, X_n])}{(X_1, X_2, \dots, X_n]}$
 - $\frac{\text{alldifferent}([Y_1, Y_2, \dots, Y_n])}{(Y_1, Y_2, \dots, Y_n]}$
 - for all i<j $|X_i X_i| \neq |i j|$
 - for all i<j $|Y_i Y_i| \neq |i j|$
- Channeling Constraints
 - for all i, j $X_i = j \leftrightarrow Y_i = i$