PART I: Modeling

Modeling in CP

- User models a decision problem by formalizing:
	- the unknowns of the decision \rightarrow decision variables (X_i) .
	- possible values for unknowns \rightarrow domains $(D(X_i) = \{v_j\})$.
	- relations between the unknowns \rightarrow constraints (r(X_i, X_{i'})).

Formalization as a Constraint Satisfaction Problem (CSP)

- A CSP is a triple **<X,D,C>** where:
	- $-$ **X** is a set of decision variables $\{X_1,...,X_n\}$;
	- \blacksquare **D** is a set of domains $\{D_1, ..., D_n\}$ for **X**:
		- D_i is a set of possible values for X_i ;
		- usually non-binary and assume finite domain;
	- $\overline{\mathbf{C}}$ is a set of constraints $\{C_1, \ldots, C_m\}$:
		- C_i is a relation over $X_j, ..., X_k$, denoted as $C_i(X_j, ..., X_k)$;
		- C_i the set of combination of allowed values $C_i \subseteq D(X_i) \times ... \times D(X_k)$.
- A solution to a CSP is an assignment of values to the variables which satisfies (that is feasible for) all constraints simultaneously.

Constraint Optimization Problems

- CSP enhanced with an optimization criterion, e.g.:
	- minimum cost;
	- shortest distance;
	- fastest route;
	- maximum profit.
- Formally, **<X,D,C,f>** where **f** is the formalization of the optimization criterion as an objective variable. Goal: minimize **f** (maximize **–f**).

Simple Examples

- Variables $X = {X_1, X_2}$
- Domains $D(X_1) = [1..3], D(X_2) = [1..3]$
- Constraints
	- $-C_1(X_1, X_2) = \{(1,2), (1,3), (2,3)\}$
	- $-C_2(X_1, X_2) = \{(1,2), (2,3)\}\$
- **Solutions**
	- $X_1 = 1, X_2 = 2$ $X_1 = 2, X_2 = 3$
- Variables $X = \{X_1, X_2, X_3\}$
- Domains
	- $D(X_1) = D(X_2) = D(X_3) = \{1, 3, 5\}$
- Constraints
	- $X_1 + X_2 \le X_3$
		- alldifferent($[X_1, X_2, X_3]$)
- Solutions
	- $X_1 = 1$, $X_2 = 3$, $X_3 = 5$ $X_1 = 3$, $X_2 = 1$, $X_3 = 5$

N-Queens

• Place n queens in an nxn board so that no two queens can attack each other.

N-Queens

- **Variables and Domains**
	- A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
	- Domain values [1..n] represent the columns:
		- $X_i = j$ means that the queen in row i is in column j
- **Constraints**
	- alldifferent($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
	- for all i<j $|X_i X_j| \neq |i j|$ \longrightarrow no diagonal attack
-

Sudoku

- **Variables and Domains**
	- 9x9 variables X_{ij} for each cell with domains [1..9].
		- X_{ij} = k means that the cell X_{ij} has the value k.
- **Constraints**
	- Initial assignments. E.g., $X_{21} = 6$.
	- Difference constraints on all the rows, columns, and 3x3 boxes. E.g., alldifferent($[X_{11}, X_{21}, X_{31}, ..., X_{91}]$) alldifferent($[X_{11}, X_{12}, X_{13}, ..., X_{19}]$) alldifferent($[X_{11}, X_{21}, X_{31}, X_{12}, X_{22}, X_{32}, X_{13}, X_{23}, X_{33}]$)

Task Scheduling

- Schedule n tasks on a machine, in time D, by obeying the temporal and precedence constraints:
	- $-$ each task t_i has a specific fixed processing time p_i ;
	- $-$ each task t_i can be started after its release date r_i , and must be completed before its deadline d_i;
	- tasks cannot overlap in time;
	- precedence relations (\rightarrow) must be respected.

Task Scheduling

• Variables and Domains

- $-$ Start_i, representing the starting time of a task t_i , taking a value from [0..D].
- Ensures that each task starts at exactly one time point.
- Constraints
	- Respect of release date and deadline
		- for all $i \in [1..n]$, $r_i \leq Start_i \leq d_i p_i$
	- No overlap in time

• for all $i < j \in \{1, ..., n\}$, $(Start_i + p_i \le Start_j) \vee (Start_j + p_j \le Start_i)$

– Precedence constraints

• Start_i + p_i ≤ Start_i for each pair of tasks t_i \rightarrow t_i

Optimal Map Colouring

• What is the minimum number of colours necessary to colour the neighbouring regions differently?

Optimal Map Colouring

- **Variables and Domains**
	- $-$ X_i for each of n regions with domain [1..n].
- **Constraints**
	- X_i ≠ X_i for each neighbour region i and j
- **Objective variable**
	- $-$ f = max(X_i)
- Objective: minimize f

Variables and Domains

- Variable domains include the classical:
	- binary, integer, continuous.
- In addition, variables may take a value from *any* finite set. $-$ e.g., X in $\{a,b,c,d,e\}$.
- There exist special "structured" variable types.
	- Set variables (take a set of elements as value).
	- Activities or interval variables (for scheduling applications).

Constraints

- Any kind of constraint can be expressed by listing all allowed combinations.
	- $-C(X_1, X_2) = \{(0,0), (0,2), (1,3), (2,1)\}\$
	- Extensional representation.
	- General but possibly inconvenient and inefficient with large domains.
- Declarative (invariant) relations among objects.
	- $X > Y$
	- Intensional representation.
	- More compact, clear but less general.

Properties of Constraints

- The order of imposition does not matter.
	- X + Y <= Z, Z >= X + Y
- Non-directional.
	- A constraint between X and Y can be used to infer domain information on Y given domain information on X and vice versa.
- Rarely independent.
	- Shared variables as communication mechanism between different constraints.

Constraints – Examples

- Algebraic expressions
	- $X_1 > X_2$
	- $X_1 + X_2 = X_3$
- Extensional constraints (table constraints)
	- (X,Y,Z) in $\{(a, a, a), (b, b, b), (c, c, c)\}$
- Variables as subscripts (element constraints)
	- $Y = cost[X]$ (here Y and X are variables, 'cost' is an array of parameters)

Constraints – Examples

- Logical relations
	- (X < Y) ∨ (Y < Z) ➝ C
- l Global constraints
	- alldifferent($[X_1, X_2, X_3]$) instead of:

 $X_1 \neq X_2$, $X_1 \neq X_3$, $X_2 \neq X_3$

- noOverlap($[Start_1, ..., Start_n]$, $[p_1, ..., p_n]$) instead of: for all $i < j \in \{1, ..., n\}$, $(Start_i + p_i \le Start_i) \vee (Start_i + p_i \le Start_i)$
- Meta-constraints
	- $\sum_i (X_i > t_i) \leq 5$

Modeling is Critical!

- Choice of variables and domains defines the search space size.
	- $|D(X_1)| \times |D(X_2)| \times ... \times |D(X_n)|$
	- Exponential in size!
- Choice of constraints defines:
	- how search space can be reduced;
	- how search can be guided.
- Need to go beyond the declarative specification!

Modeling is Critical

- Given the human understanding of a problem, we need to answer questions like:
	- which variables shall I choose?
	- which constraints shall I enforce?
	- can I exploit any global constraints?
	- do I need any auxiliary variables?
	- are some constraints redundant, therefore can be avoided?
	- are there any implied constraints?
	- can symmetry be eliminated?
	- are there any dual viewpoints?
	- among alternative models, which one shall I prefer?

Golomb Ruler

- Place m marks on a ruler such that:
	- distance between each pair of marks is different;
	- the length of the ruler is minimum.
- Applications in radio astronomy and information theory.
- Difficult to solve! Largest known ruler is of order 28.

A non optimal Golomb ruler of order 4.

Golomb Ruler

- Place m marks on a ruler such that:
	- distance between each pair of marks is different;
	- the length of the ruler is minimum.
- Applications in radio astronomy and information theory.
- Difficult to solve! Largest known ruler is of order 28.

An optimal Golomb ruler of order 4.

Naive Model

- Variables and Domains
	- $-$ [X₁, X₂, .., X_m]
	- X_i , representing the position of the ith mark, taking a value from $\{0,1,\ldots,2^{(m-1)}\}$

Naive Model

- Variables and Domains
	- $[X_1, X_2, ..., X_m]$
	- X_i , representing the position of the ith mark, taking a value from $\{0,1,\ldots,2^{(m-1)}\}$
- Constraints
	- for all $i_1 < j_1$, $i_2 < j_2$, $i_1 \neq i_2$ or $j_1 \neq j_2$ $|X_{i1} X_{i1}| \neq |X_{i2} X_{i2}|$
- Objective: minimize (max($[X_1, X_2, ..., X_m]$))

Naive Model

- Variables and Domains
	- $[X_1, X_2, ..., X_m]$
	- X_i , representing the position of the ith mark, taking a value from $\{0,1,\ldots,2^{(m-1)}\}$
- Constraints
	- for all $i_1 < j_1$, $i_2 < j_2$, $i_1 \neq i_2$ or $j_1 \neq j_2$ $|X_{i1} X_{i1}| \neq |X_{i2} X_{i2}|$
- Objective: minimize (max $([X_1, X_2, ..., X_m])$)
- Problematic model.
	- $-$ O(m⁴) quaternary constraints.
	- Loose reduction in domains.

Better Model

• Auxiliary Variables

- New variables introduced into a model, because either:
	- it is difficult/impossible to express some constraints on the main decision variables;
	- or some constraints on the main decision variables do not lead to significant domain reductions.
- for all i<j $\,$ D_{ij}, representing the distance between ith and the jth marks.
- Constraints
	- for all i<j, $D_{ij} = |X_i X_j|$
	- alldifferent($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)

Better Model

- Constraints
	- for all $i < j$ D_{ij} = $|X_i X_j|$
	- alldifferent($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)
- Improvements
	- Quadratic O(m²) ternary constraints.
	- A global constraint.

Better Model

- Constraints
	- for all $i < j$ D_{ij} = $|X_i X_j|$
	- alldifferent($[D_{12}, D_{13}, ..., D_{(m-1)m}]$)
	- alldifferent $([X_1, X_2, ..., X_m])$
- **Improvements**
	- $-$ O(m²) ternary constraints.
	- A global constraint.
	- Implied constraint
		- Logically implied by the constraints of the problem which cannot be deduced by the solver.
		- Semantically redundant (no change in the set of solutions), computationally significant (can greatly reduce the search space)!

- Deducing information from Golomb Rulers of smaller order
	- If you consider any k consecutive marks of a Golomb Ruler of order $n > k$, they form a Golomb Ruler of order k .

An optimal Golomb ruler of order 4.

- Deducing information from Golomb Rulers of smaller order
	- If you consider any k consecutive marks of a Golomb Ruler of order $n > k$, they form a Golomb Ruler of order k .
	- Therefore, they must span over a distance at least as long as the optimal size of Rulers of order k.
	- for all i<j D_{ii} ≥ optimal value of the ruler of order (j-i+1)

Symmetry in CSPs

- **Creates many symmetrically equivalent** search states:
	- A state leading to a solution/failure will have many symmetrically equivalent states.
- Bad when proving optimality, infeasibility or looking for all solutions.
	- May lead to thrashing.
- Variable and value symmetry.

Symmetries and Permutation

• Permutation

- Defined over a discrete set S as a 1-1 function $\pi: S \rightarrow S$.
- Intuitively: re-arrangement of a set of elements, e.g.,
	- \bullet i: 1 2 3 4 5
	- \bullet π(i): 35421
- Variable Symmetry
	- A permutation π of the variable indices s.t. for each (un)feasible (partial) assignment, we can re-arrange the variables according to π and obtain another (un)feasible (partial) assignment.
	- Intuitively: permuting variable assignments.
	- π identifies a specific symmetry.

Variable Symmetries in Golomb Ruler

Permuting variable assignments $X_1 = 0$, $X_2 = 1$, $X_3 = 4$, $X_4 = 6$ $X_1 = 0$, $X_2 = 1$, $X_3 = 6$, $X_4 = 4$ $X_1 = 0$, $X_2 = 4$, $X_3 = 1$, $X_4 = 6$ $X_1 = 0$, $X_2 = 4$, $X_3 = 6$, $X_4 = 1$ $X_1 = 0$, $X_2 = 6$, $X_3 = 1$, $X_4 = 4$ $X_1 = 0$, $X_2 = 6$, $X_3 = 4$, $X_4 = 1$

…

- m! permutations \rightarrow m! variable symmetries
- For a given (un)feasible assignment, there are m! (un)feasible assignments.

Value Symmetry

• Value Symmetry

- A permutation π of values s.t. for each (un)feasible (partial) assignment, we can re-arrange the values according to π and obtain another (un) feasible (partial) assignment.
- Intuitively: permuting values.
- π identifies a specific symmetry.

A Value Symmetry in Golomb Ruler

• Values can be permuted as: $0 \to 0$, $1 \to 2$, $2 \to 1$, $3 \to 3$, $4 \to 5$, $5 \to 4$, $6 \to 6$ (reversing the ruler)

> $X_1 = 0$, $X_2 = 1$, $X_3 = 4$, $X_4 = 6$ \rightarrow $X_1 = 0$, $X_2 = 2$, $X_3 = 5$, $X_4 = 6$

Any other value symmetry in the models we have seen so far?

Variable and Value Symmetry

- Composition of a variable and a value symmetry.
- **Golomb Ruler**
	- Both variable assignments and values can be permuted. $X_1 = 0$, $X_2 = 1$, $X_3 = 4$, $X_4 = 6 \rightarrow X_1 = 0$, $X_2 = 2$, $X_3 = 5$, $X_4 = 6$ \rightarrow X₁ = 2, X₂ = 0, X₃ = 6, X₄ = 5
	- For a given (un)feasible assignment, there are 2*m! (un)feasible assignments.

Symmetry Breaking Constraints

- Reduce the set of solutions and search space!
- Not logically implied by the constraints of the problem.
- Common technique: impose an ordering to avoid permutations.
	- E.g., X_1 ≤ X_2 … ≤ X_n when $[X_1, X_2, ..., X_n]$ are all symmetric.
- Attention: at least one solution from each set of symmetrically equivalent solutions must remain.

- Symmetry Breaking Constraints
	- $X_1 < X_2 < ... < X_m$
	- $X_1 = 0$
	- D_{12} < $D_{(m-1)m}$
- New Objective
	- minimize (X_m)

- Symmetry breaking constraints enable constraint simplification.
	- $X_1 < X_2 < ... < X_m$
		- alldifferent($[X_1, X_2, ..., X_m]$) becomes redundant (semantically and computationally).
		- for all i<j, $D_{ij} = |X_i X_j|$ becomes for all i<j, $D_{ij} = X_j X_i$
	- Note the terminology redundant vs implied.

- Symmetry breaking constraints enable additional implied constraints.
	- for all $i < j < k$, $D_{ii} < D_{ik}$ and $D_{ik} < D_{ik}$ $D_{ik} = D_{ij} + D_{ik}$

An optimal Golomb ruler of order 4.

Can We Improve This Model Too?

- **Variables and Domains**
	- A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
	- Domain values {1,...,n} represent the columns:
		- $X_i = j$ means that the queen in row i is in column j
- **Constraints**
	- alldifferent([X₁, X₂, ..., X_n]) \rightarrow no column attack
	- for all $i < j$ $|X_i X_j| \neq |i j|$
- \rightarrow no diagonal attack

N-Queens

- Diagonal attack constraint
	- for all i<j $|X_i X_j| \neq |i j|$

$$
\equiv \text{for all } i < j \ X_i - X_j \neq i - j \text{ and } X_i - X_j \neq j - i \text{ and } X_j - X_i \neq i - j \text{ and } X_j - X_i \neq j - i
$$

- ≡ for all i<j $X_i i \neq X_i j$ and $X_i + i \neq X_i + j$
- ≡ alldifferent([X₁ 1, X₂ 2, …, X_n n])
- \equiv alldifferent([X₁ + 1, X₂ + 2, …, X_n + n])

A Better Model

- **Original Model**
	- alldifferent($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
	- for all i<j |X_i X_j| ≠ |i j| → no diagonal attack
	- Alldiff Model
		- alldifferent($[X_1, X_2, ..., X_n]$)
		- alldifferent($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
		- alldifferent($[X_1 1, X_2 2, ..., X_n n]$)

Modeling is Critical!

- Given the human understanding of a problem, we need to answer questions like:
	- which variables shall I choose?
	- which constraints shall I enforce?
	- can I exploit any global constraints?
	- do I need any auxiliary variables?
	- are some constraints redundant, therefore can be avoided?
	- are there any implied constraints?
	- can symmetry be eliminated?
	- are there any dual viewpoints?
	- among alternative models, which one shall I prefer?

Dual Viewpoint

- Viewing a problem P from different perspectives may result in different models for P.
- Each model yields the same set of solutions.
- Each model exhibits in general a different representation of P.
	- Different variables.
	- Different domains.
	- Different constraints.
		- Different size of the search space!
- Can be hard to decide which is better!

Symmetries of N-Queens

- Geometric symmetries.
	- Cannot impose an ordering like $X_1 \leq X_2 \ldots \leq X_n$
	- We need to avoid certain 7 permutations of $[X_1, X_2, ..., X_n]$.
	- These permutations are difficult to define in the current model.

A Dual Model

- Variables and Domains
	- Represent the board with n x n Boolean variables $B_{ii} \in [0..1]$.
- Attacking Constraints
	- $\sum B_{ij} = 1$ on all rows and columns, $\sum B_{ij} \le 1$ on all diagonals.
- Symmetry Breaking Constraints
	- Flatten the 2-d matrix to a single sequence of variables.
		- E.g., append every row to the end of the first row.
	- Every symmetric configuration corresponds to a variable permutation of the original solution, which is easy to define.
	- Impose an order between the original solution and all the solutions obtained by the 7 permutations:
		- \bullet lex≤(B, π(B)) for all π.

Lexicographic Ordering Constraint

- Requires a sequence of variables to be lexicographically less than or equal to another sequence of variables.
- $lexS([Y_1, Y_2, ..., Y_k], [Z_1, Z_2, ..., Z_k])$ holds iff: $Y_1 \leq Z_1$ AND $(Y_1 = Z_1 \rightarrow Y_2 \leq Z_2)$ AND $(Y_1 = Z_1$ AND $Y_2 = Z_2 \rightarrow Y_3 \leq Z_3)$... $(Y_1 = Z_1$ AND $Y_2 = Z_2$ $Y_{k-1} = Z_{k-1} \rightarrow Y_k \le Z_k$ – lex≤([1, 2, 4],[1, 3, 3])

Symmetry Breaking in N-Queens

- $lex ≤ (B, [B_{ii} | i, j ∈ [1..n]))$
- $lex ≤ (B, [B_{ij} | i ∈ [n..1], j ∈ [1..n]$])
- $lex ≤ (B, [B_{ii} | i, j ∈ [n..1]))$

 \bullet …

• $lex ≤ (B, [B_{ij} | i ∈ [1..n], j ∈ [n..1]])$

- i, j \rightarrow j, i
- \bullet i,j \rightarrow reverse i, j
- \bullet i,j \rightarrow reverse j, reverse i
- \bullet i, j \rightarrow i, reverse j
- \bullet …

Symmetry Breaking in N-Queens

- $lex ≤ (B, [B_{ii} | i, j ∈ [1..n]))$
- $lex ≤ (B, [B_{ii}] | i ∈ [n..1], j ∈ [1..n]$])
- $lex ≤ (B, [B_{ii} | i ∈ [1..n], j ∈ [n..1]])$
- $lex ≤ (B, [B_{ii} | i ∈ [1..n], j ∈ [n..1]])$
- $lex ≤ (B, [B_{ii} | i ∈ [n..1], j ∈ [1..n]$])
- $lex ≤ (B, [B_{ii} | i, j ∈ [n..1]))$
- $lex ≤ (B, [B_{ii} | i, j ∈ [n..1]]))$

Which Model?

- Alldiff Model
	- $[X_1, X_2, ..., X_n] \in [1..n]$
	- $-$ alldifferent($[X_1, X_2, ..., X_n]$)
	- alldifferent($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
	- alldifferent($[X_1 1, X_2 2, ..., X_n n]$)
- **Boolean Symmetry Breaking Model**
	- $n \times n$ B_{ij} ∈ [0..1]
	- $\sum B_{ij} = 1$ on all rows, columns
	- $\sum B_{ij} \leq 1$ on diagonals
	- lex≤(B , π(B)) for all π
- \odot Easy symmetry breaking
- \odot No global constraints
- \odot Global constraints
- \odot No easy symmetry breaking

Which Model?

• Combined model

- $-$ If you can't beat them, combine them \odot
- Keep both models and use channeling constraints to maintain consistency between the variables of the two models.
- Benefits:
	- Facilitation of the expression of constraints.
	- Enhanced constraint propagation.
	- More options for search variables.

A Combined Model

- Variables
	- for all i, X_i ∈ [1..n], for all i, j B_{ij} ∈ [0..1]
- **Constraints**
	- alldifferent $([X_1, X_2, ..., X_n])$
	- alldifferent($[X_1 + 1, X_2 + 2, ..., X_n + n]$)
	- alldifferent([X₁ 1, X₂ 2, ..., X_n n])
	- lex≤(B , π(B)) for all π
- **Channeling Constraints**
	- for all i,j $X_i = j \leftrightarrow B_{ij} = 1$

Dual Model of the Original Model?

- **Variables and Domains**
	- A variable for each row $[X_1, X_2, ..., X_n] \rightarrow$ no row attack
	- Domain values [1..n] represent the columns:
		- $X_i = j$ means that the queen in row i is in column j
- **Constraints**
	- alldifferent($[X_1, X_2, ..., X_n]$) \rightarrow no column attack
	- for all i<j $|X_i X_j| \neq |i j|$ \longrightarrow no diagonal attack
-

Another Dual Model

Both viewpoints yield the same CSP!

Variables and Domains

- A variable for each column $[Y_1,Y_2,...,Y_n] \rightarrow$ no column attack
- Domain values [1..n] represent the rows:
	- $Y_i = j$ means that the queen in column i is in row j

Constraints

- alldifferent($[Y_1, Y_2, ..., Y_n]$) \rightarrow no row attack
- for all i<j $|Y_i Y_j| \neq |i j|$ → \rightarrow no diagonal attack
-

Another Combined Model

- Variables
- [X₁, X₂, …, X_n], [Y₁, Y₂, …, Y_n] ∈ [1..n]

Constraints

 alldifferent([X₁, X₂, …, X_n])

 alldifferent([Y₁, Y₂, …, Y_n])

 for all i<i "

 for all i<i "
- Constraints
	- $-$ alldifferent($[X_1, X_2, ..., X_n]$)
	- $-$ alldifferent($[Y_1, Y_2, ..., Y_n]$)
	- for all i<j $|X_i X_j| \neq |i j|$
	- for all i<j $|Y_i Y_j| \neq |i j|$
- Channeling Constraints
	- for all i,j $X_i = j \leftrightarrow Y_i = i$

Another Combined Model

- Variables
- [X₁, X₂, …, X_n], [Y₁, Y₂, …, Y_n] ∈ [1..n]

Constraints

 alldifferent([X₄, X₂, …, X_n])

 alldifferent([Y₄, Y₂, …, Y₋¹⁾

 for all i<j |X_i Y⁺
- Constraints
	- $-\alpha$ lldifferent($[X_1, X_2, \ldots, X_n]$)
	- $-\alpha$ lldifferent($[Y_4, Y_2, \ldots, Y_n]$)
	- for all i<j $|X_i X_j| \neq |i j|$
	- for all i<j $|Y_i Y_j| \neq |i j|$
- Channeling Constraints
	- for all i,j $X_i = j \leftrightarrow Y_i = i$

Another Combined Model

- Variables
	- $[X_1, X_2, ..., X_n]$, $[Y_1, Y_2, ..., Y_n] \in [1..n]$

	Constraints

	 alldifferent($[X_4, X_2, ..., X_n]$)

	 alldifferent($[Y_4, Y_2, ..., Y_n]$)

	 for
- Constraints
	- $-\alpha$ lldifferent($[X_1, X_2, \ldots, X_n]$)
	- $-$ alldifferent($[Y_4, Y_2, ..., Y_n]$)
	- for all i<j $|X_i X_j| \neq |i j|$
	- for all i<j |Y_⊦- Y_j| ≠ |i j|
- Channeling Constraints
	- for all i,j $X_i = j \leftrightarrow Y_i = i$