
PART I: Modeling

Modeling in CP

l User models a decision
problem by formalizing:
– the unknowns of the decision à

decision variables (Xi).
– possible values for unknowns à

domains (D(Xi) = {vj}).
– relations between the unknowns
à constraints (r(Xi, Xi’)).

Problem

Model

User

Formalization as a Constraint
Satisfaction Problem (CSP)

l A CSP is a triple <X,D,C> where:
– X is a set of decision variables {X1,...,Xn};
– D is a set of domains {D1,...,Dn} for X:

l Di is a set of possible values for Xi;
l usually non-binary and assume finite domain;

– C is a set of constraints {C1,…,Cm}:
l Ci is a relation over Xj,...,Xk, denoted as !!"#"$%&$%##'!
l Ci the set of combination of allowed values Ci Í ("#"'%)%***)%("##'*

l A solution to a CSP is an assignment of values to the
variables which satisfies (that is feasible for) all
constraints simultaneously.

Constraint Optimization Problems

l CSP enhanced with an optimization criterion,
e.g.:
– minimum cost;
– shortest distance;
– fastest route;
– maximum profit.

l Formally, <X,D,C,f> where f is the formalization
of the optimization criterion as an objective
variable. Goal: minimize f (maximize –f).

Simple Examples

l Variables
X = {X1, X2}

l Domains
D(X1) = [1..3], D(X2) = [1..3]

l Constraints
– C1(X1, X2) = {(1,2), (1,3), (2,3)}
– C2(X1, X2) = {(1,2), (2,3)}

l Solutions
X1 = 1, X2 = 2
X1 = 2, X2 = 3

l Variables
X = {X1, X2, X3}

l Domains
D(X1) = D(X2) = D(X3) = {1, 3, 5}

l Constraints
– X1 + X2 ≤ X3

– alldifferent([X1, X2, X3])
l Solutions

X1 = 1, X2 = 3, X3 = 5
X1 = 3, X2 = 1, X3 = 5

N-Queens

l Place n queens in an nxn board so that no
two queens can attack each other.

N-Queens

l Variables and Domains
– A variable for each row [X1,X2 ,..., Xn] à no row attack
– Domain values [1..n] represent the columns:

l Xi = j means that the queen in row i is in column j

l Constraints
– alldifferent([X1, X2, …, Xn]) à no column attack
– for all i<j |Xi - Xj| ≠ |i - j| à no diagonal attack

1 n
X1

Xn

Sudoku

Sudoku

l Variables and Domains
– 9x9 variables Xij for each cell with domains [1..9].

l Xij = k means that the cell Xij has the value k.
l Constraints

– Initial assignments. E.g., X21 = 6.
– Difference constraints on all the rows, columns, and 3x3 boxes. E.g.,

alldifferent([X11, X21, X31, …, X91])
alldifferent([X11, X12, X13, …, X19])
alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33])

Task Scheduling

l Schedule n tasks on a machine, in time D, by obeying the temporal
and precedence constraints:

– each task ti has a specific fixed processing time pi;
– each task ti can be started after its release date ri, and must be

completed before its deadline di;
– tasks cannot overlap in time;
– precedence relations (à) must be respected.

Task Scheduling

l Variables and Domains
– Starti, representing the starting time of a task ti, taking a value

from [0..D].
– Ensures that each task starts at exactly one time point.

l Constraints
– Respect of release date and deadline

l for all i ∊ [1..n], ri ≤ Starti ≤ di – pi

– No overlap in time
l for all i < j ∊ {1, …, n}, (Starti + pi ≤ Startj) ∨ (Startj + pj ≤ Starti)

– Precedence constraints
l Starti + pi ≤ Startj for each pair of tasks ti à tj

Optimal Map Colouring

l What is the minimum number of colours
necessary to colour the neighbouring regions
differently?

Optimal Map Colouring

l Variables and Domains
– Xi for each of n regions with domain [1..n].

l Constraints
– Xi ≠ Xj for each neighbour region i and j

l Objective variable
– f = max(Xi)

l Objective: minimize f

Variables and Domains

l Variable domains include the classical:
– binary, integer, continuous.

l In addition, variables may take a value from any finite set.
– e.g., X in {a,b,c,d,e}.

l There exist special “structured” variable types.
– Set variables (take a set of elements as value).
– Activities or interval variables (for scheduling applications).

Constraints

l Any kind of constraint can be expressed by listing all
allowed combinations.

– C(X1, X2) = {(0,0), (0,2), (1,3), (2,1)}
– Extensional representation.
– General but possibly inconvenient and inefficient with large

domains.
l Declarative (invariant) relations among objects.

– X > Y
– Intensional representation.
– More compact, clear but less general.

Properties of Constraints

l The order of imposition does not matter.
– X + Y <= Z, Z >= X + Y

l Non-directional.
– A constraint between X and Y can be used to infer domain

information on Y given domain information on X and vice
versa.

l Rarely independent.
– Shared variables as communication mechanism between

different constraints.

Constraints – Examples

l Algebraic expressions
– X1 > X2

– X1 + X2 = X3

l Extensional constraints (table constraints)

– (X,Y,Z) in {(a, a, a), (b, b, b), (c, c, c)}

l Variables as subscripts (element constraints)
– Y = cost[X] (here Y and X are variables, ‘cost’ is an array of

parameters)

Constraints – Examples

l Logical relations
– (X < Y) ∨ (Y < Z) ➝ C

l Global constraints
– alldifferent([X1, X2, X3]) instead of:

X1 ≠ X2, X1 ≠ X3, X2 ≠ X3

– noOverlap([Start1, …, Startn], [p1, …, pn]) instead of:
for all i < j ∊ {1, …, n}, (Starti + pi ≤ Startj) ∨ (Startj + pj ≤ Starti)

l Meta-constraints
– ∑i (Xi > ti) ≤ 5

Modeling is Critical!

l Choice of variables and domains defines the
search space size.
– |D(X1)| x |D(X2)| x … x |D(Xn)|
– Exponential in size!

l Choice of constraints defines:
– how search space can be reduced;
– how search can be guided.

l Need to go beyond the declarative specification!

Modeling is Critical

l Given the human understanding of a problem, we need
to answer questions like:

– which variables shall I choose?
– which constraints shall I enforce?
– can I exploit any global constraints?
– do I need any auxiliary variables?
– are some constraints redundant, therefore can be avoided?
– are there any implied constraints?
– can symmetry be eliminated?
– are there any dual viewpoints?
– among alternative models, which one shall I prefer?

Golomb Ruler

l Place m marks on a ruler such that:
– distance between each pair of marks is different;
– the length of the ruler is minimum.

l Applications in radio astronomy and information theory.
l Difficult to solve! Largest known ruler is of order 28.

Golomb Ruler

l Place m marks on a ruler such that:
– distance between each pair of marks is different;
– the length of the ruler is minimum.

l Applications in radio astronomy and information theory.
l Difficult to solve! Largest known ruler is of order 28.

Naive Model

l Variables and Domains
– [X1, X2, .., Xm]
– Xi, representing the position of the ith mark, taking a value

from {0,1,…,2(m-1)}

1 2 84

Naive Model

l Variables and Domains
– [X1, X2, .., Xm]
– Xi, representing the position of the ith mark, taking a value

from {0,1,…,2(m-1)}
l Constraints

- for all i1<j1, i2<j2, i1 ≠ i2 or j1 ≠ j2 |Xi1 - Xj1| ≠ | Xi2 - Xj2|
l Objective: minimize (max([X1, X2, .., Xm]))

Naive Model

l Variables and Domains
– [X1, X2, .., Xm]
– Xi, representing the position of the ith mark, taking a value

from {0,1,…,2(m-1)}
l Constraints

- for all i1<j1, i2<j2, i1 ≠ i2 or j1 ≠ j2 |Xi1 - Xj1| ≠ | Xi2 - Xj2|
l Objective: minimize (max([X1, X2, .., Xm]))
l Problematic model.

- O(m4) quaternary constraints.
- Loose reduction in domains.

Better Model

l Auxiliary Variables
– New variables introduced into a model, because either:

• it is difficult/impossible to express some constraints on the main
decision variables;

• or some constraints on the main decision variables do not lead to
significant domain reductions.

– for all i<j Dij, representing the distance between ith and the jth
marks.

l Constraints
- for all i<j, Dij = |Xi - Xj|
- alldifferent([D12, D13, …, D(m-1)m])

Better Model

l Constraints
- for all i<j Dij = |Xi - Xj|
- alldifferent([D12, D13, …, D(m-1)m])

l Improvements
- Quadratic O(m2) ternary constraints.
- A global constraint.

Better Model

l Constraints
- for all i<j Dij = |Xi - Xj|
- alldifferent([D12, D13, …, D(m-1)m])
- alldifferent([X1, X2, …, Xm])

l Improvements
- O(m2) ternary constraints.
- A global constraint.
- Implied constraint

• Logically implied by the constraints of the problem which cannot be
deduced by the solver.

• Semantically redundant (no change in the set of solutions),
computationally significant (can greatly reduce the search space)!

Improved Model

l Deducing information from Golomb Rulers of smaller
order
– If you consider any k consecutive marks of a Golomb Ruler of

order n > k, they form a Golomb Ruler of order k.

Improved Model

l Deducing information from Golomb Rulers of smaller
order
– If you consider any k consecutive marks of a Golomb Ruler of

order n > k, they form a Golomb Ruler of order k.
– Therefore, they must span over a distance at least as long as

the optimal size of Rulers of order k.
– for all i<j Dij ≥ optimal value of the ruler of order (j-i+1)

Symmetry in CSPs

l Creates many symmetrically equivalent
search states:
– A state leading to a solution/failure will have many

symmetrically equivalent states.
l Bad when proving optimality, infeasibility or

looking for all solutions.
– May lead to thrashing.

l Variable and value symmetry.

Symmetries and Permutation

l Permutation
– Defined over a discrete set S as a 1-1 function π: S → S.
– Intuitively: re-arrangement of a set of elements, e.g.,

l i: 1 2 3 4 5
l π(i): 3 5 4 2 1

l Variable Symmetry
– A permutation π of the variable indices s.t. for each

(un)feasible (partial) assignment, we can re-arrange the
variables according to π and obtain another (un)feasible
(partial) assignment.

– Intuitively: permuting variable assignments.
– π identifies a specific symmetry.

Variable Symmetries in Golomb Ruler

l Permuting variable assignments
X1 = 0, X2 = 1, X3 = 4, X4 = 6
X1 = 0, X2 = 1, X3 = 6, X4 = 4
X1 = 0, X2 = 4, X3 = 1, X4 = 6
X1 = 0, X2 = 4, X3 = 6, X4 = 1
X1 = 0, X2 = 6, X3 = 1, X4 = 4
X1 = 0, X2 = 6, X3 = 4, X4 = 1
…

l m! permutations à m! variable symmetries
l For a given (un)feasible assignment, there are m! (un)feasible

assignments.

Value Symmetry

l Value Symmetry
– A permutation π of values s.t. for each (un)feasible (partial)

assignment, we can re-arrange the values according to π and
obtain another (un) feasible (partial) assignment.

– Intuitively: permuting values.
– π identifies a specific symmetry.

A Value Symmetry in Golomb Ruler

l Values can be permuted as:
0 à 0, 1 à 2, 2 à 1, 3 à 3, 4 à 5, 5 à4 , 6 à 6
(reversing the ruler)

X1 = 0, X2 = 1, X3 = 4, X4 = 6 à
X1 = 0, X2 = 2, X3 = 5, X4 = 6

Variable and Value Symmetry

l Composition of a variable and a value symmetry.
l Golomb Ruler

– Both variable assignments and values can be permuted.
X1 = 0, X2 = 1, X3 = 4, X4 = 6 à X1 = 0, X2 = 2, X3 = 5, X4 = 6
à X1 = 2, X2 = 0, X3 = 6, X4 = 5

– For a given (un)feasible assignment, there are 2*m!
(un)feasible assignments.

Symmetry Breaking Constraints

l Reduce the set of solutions and search space!
l Not logically implied by the constraints of the problem.
l Common technique: impose an ordering to avoid

permutations.
– E.g., X1 ≤ X2 …. ≤ Xn when [X1, X2, …., Xn] are all symmetric.

l Attention: at least one solution from each set of
symmetrically equivalent solutions must remain.

Improved Model

l Symmetry Breaking Constraints
- X1 < X2 < … < Xm

- X1 = 0
- D12 < D(m-1)m

l New Objective
- minimize (Xm)

Improved Model

l Symmetry breaking constraints enable constraint
simplification.
- X1 < X2 < … < Xm

• alldifferent([X1, X2, …, Xm]) becomes redundant
(semantically and computationally).

• for all i<j, Dij = |Xi - Xj| becomes for all i<j, Dij = Xj - Xi

- Note the terminology redundant vs implied.

Improved Model

l Symmetry breaking constraints enable additional
implied constraints.

– for all i<j<k, Dij < Dik and Djk < Dik
Dik = Dij + Djk

Can We Improve This Model Too?

l Variables and Domains
– A variable for each row [X1,X2 ,..., Xn] à no row attack
– Domain values {1,...,n} represent the columns:

l Xi = j means that the queen in row i is in column j

l Constraints
– alldifferent([X1, X2, …, Xn]) à no column attack
– for all i<j |Xi - Xj| ≠ |i - j| à no diagonal attack

1 n
X1

Xn

N-Queens

l Diagonal attack constraint
– for all i<j |Xi – Xj| ≠ |i – j|

≡ for all i<j Xi – Xj ≠ i – j and Xi – Xj ≠ j – i and
Xj – Xi ≠ i – j and Xj – Xi ≠ j – i

≡ for all i<j Xi – i ≠ Xj – j and Xi + i ≠ Xj + j

≡ alldifferent([X1 – 1, X2 – 2, …, Xn – n])

≡ alldifferent([X1 + 1, X2 + 2, …, Xn + n])

A Better Model

l Original Model
– alldifferent([X1, X2, …, Xn]) à no column attack
– for all i<j |Xi - Xj| ≠ |i - j| à no diagonal attack

l Alldiff Model
– alldifferent([X1, X2, …, Xn])
– alldifferent([X1 + 1, X2 + 2, …, Xn + n])
– alldifferent([X1 – 1, X2 – 2, …, Xn – n])

Modeling is Critical!

l Given the human understanding of a problem, we need
to answer questions like:

– which variables shall I choose?
– which constraints shall I enforce?
– can I exploit any global constraints?
– do I need any auxiliary variables?
– are some constraints redundant, therefore can be avoided?
– are there any implied constraints?
– can symmetry be eliminated?
– are there any dual viewpoints?
– among alternative models, which one shall I prefer?

Dual Viewpoint

l Viewing a problem P from different perspectives may
result in different models for P.

l Each model yields the same set of solutions.
l Each model exhibits in general a different

representation of P.
– Different variables.
– Different domains.
– Different constraints.

l Different size of the search space!
l Can be hard to decide which is better!

Symmetries of N-Queens

l Geometric symmetries.
– Cannot impose an ordering like X1 ≤ X2 …. ≤ Xn

– We need to avoid certain 7 permutations of [X1, X2, …., Xn].
– These permutations are difficult to define in the current model.

A Dual Model

l Variables and Domains
– Represent the board with n x n Boolean variables Bij ∊ [0..1].

l Attacking Constraints
– ∑𝐵𝑖𝑗 = 1 on all rows and columns, ∑𝐵𝑖𝑗 ≤ 1 on all diagonals.

l Symmetry Breaking Constraints
– Flatten the 2-d matrix to a single sequence of variables.

l E.g., append every row to the end of the first row.

– Every symmetric configuration corresponds to a variable
permutation of the original solution, which is easy to define.

– Impose an order between the original solution and all the
solutions obtained by the 7 permutations:
l lex≤(B, π(B)) for all π.

Lexicographic Ordering Constraint

l Requires a sequence of variables to be lexicographically
less than or equal to another sequence of variables.

l lex≤([Y1, Y2, …, Yk], [Z1, Z2, …, Zk]) holds iff:
Y1 ≤ Z1 AND
(Y1 = Z1 à Y2 ≤ Z2) AND
(Y1 = Z1 AND Y2 = Z2 à Y3 ≤ Z3) …
(Y1 = Z1 AND Y2 = Z2 …. Yk-1 = Zk-1 à Yk ≤ Zk)
– lex≤([1, 2, 4],[1, 3, 3])

Symmetry Breaking in N-Queens

l i, j à j,i
l i,j à reverse i, j
l i,j à reverse j, reverse i
l i,j à i, reverse j
l …

i

j

l lex≤(B, [Bji | i, j ∊ [1..n]])
l lex≤(B, [Bij | i ∊ [n..1], j ∊ [1..n]])
l lex≤(B, [Bji | i, j ∊ [n..1]])
l lex≤(B, [Bij | i ∊ [1..n], j ∊ [n..1]])
l …

Symmetry Breaking in N-Queens

l lex≤(B, [Bji | i, j ∊ [1..n]])
l lex≤(B, [Bij | i ∊ [n..1], j ∊ [1..n]])
l lex≤(B, [Bji | i ∊ [1..n], j ∊ [n..1]])
l lex≤(B, [Bij | i ∊ [1..n], j ∊ [n..1]])
l lex≤(B, [Bji | i ∊ [n..1], j ∊ [1..n]])
l lex≤(B, [Bij | i, j ∊ [n..1]])
l lex≤(B, [Bji | i, j ∊ [n..1]])

Which Model?

l Alldiff Model
– [X1, X2, …, Xn] ∊ [1..n]
– alldifferent([X1, X2, …, Xn])
– alldifferent([X1 + 1, X2 + 2, …, Xn + n])
– alldifferent([X1 – 1, X2 – 2, …, Xn – n])

l Boolean Symmetry Breaking Model
– n x n Bij ∊ [0..1]
– ∑𝐵𝑖𝑗 = 1 on all rows, columns
– ∑𝐵𝑖𝑗 ≤ 1 on diagonals
– lex≤(B , π(B)) for all π

J Global constraints
L No easy symmetry breaking

J Easy symmetry breaking
L No global constraints

Which Model?

l Combined model
– If you can’t beat them, combine them J
– Keep both models and use channeling constraints to maintain

consistency between the variables of the two models.
– Benefits:

l Facilitation of the expression of constraints.
l Enhanced constraint propagation.
l More options for search variables.

A Combined Model

l Variables
– for all i, Xi ∊ [1..n], for all i, j Bij ∊ [0..1]

l Constraints
– alldifferent([X1, X2, …, Xn])
– alldifferent([X1 + 1, X2 + 2, …, Xn + n])
– alldifferent([X1 – 1, X2 – 2, …, Xn – n])
– lex≤(B , π(B)) for all π

l Channeling Constraints
– for all i,j Xi = j ↔ Bij = 1

Dual Model of the Original Model?

l Variables and Domains
– A variable for each row [X1,X2 ,..., Xn] à no row attack
– Domain values [1..n] represent the columns:

l Xi = j means that the queen in row i is in column j

l Constraints
– alldifferent([X1, X2, …, Xn]) à no column attack
– for all i<j |Xi - Xj| ≠ |i - j| à no diagonal attack

1 n
X1

Xn

Another Dual Model

l Variables and Domains
– A variable for each column [Y1,Y2 ,..., Yn] à no column attack
– Domain values [1..n] represent the rows:

l Yi = j means that the queen in column i is in row j

l Constraints
– alldifferent([Y1, Y2, …, Yn]) à no row attack
– for all i<j |Yi - Yj| ≠ |i - j| à no diagonal attack

Y1 Yn
1

n

Both viewpoints yield
the same CSP!

Another Combined Model

l Variables
– [X1, X2, …, Xn], [Y1, Y2, …, Yn] ∊ [1..n]

l Constraints
– alldifferent([X1, X2, …, Xn])
– alldifferent([Y1, Y2, …, Yn])
– for all i<j |Xi - Xj| ≠ |i - j|
– for all i<j |Yi - Yj| ≠ |i - j|

l Channeling Constraints
– for all i,j Xi = j ↔ Yj = i

Another Combined Model

l Variables
– [X1, X2, …, Xn], [Y1, Y2, …, Yn] ∊ [1..n]

l Constraints
– alldifferent([X1, X2, …, Xn])
– alldifferent([Y1, Y2, …, Yn])
– for all i<j |Xi - Xj| ≠ |i - j|
– for all i<j |Yi - Yj| ≠ |i - j|

l Channeling Constraints
– for all i,j Xi = j ↔ Yj = i

Another Combined Model

l Variables
– [X1, X2, …, Xn], [Y1, Y2, …, Yn] ∊ [1..n]

l Constraints
– alldifferent([X1, X2, …, Xn])
– alldifferent([Y1, Y2, …, Yn])
– for all i<j |Xi - Xj| ≠ |i - j|
– for all i<j |Yi - Yj| ≠ |i - j|

l Channeling Constraints
– for all i,j Xi = j ↔ Yj = i

