PART I: Modeling



Modeling in CP

e User models a decision
problem by formalizing:

— the unknowns of the decision =
decision variables (X,).

- possible values for unknowns -
domains (D(X;) = {vj}).

— relations between the unknowns
—> constraints (r(Xi, X:)).

Problem




Formalization as a Constraint
Satisfaction Problem (CSP)

e A CSP is a triple <X,D,C> where:

— Xis a set of decision variables {X;,...,X.};

— D is a set of domains {D;,...,D,} for X:
e D, is a set of possible values for X;;
e usually non-binary and assume finite domain;

— C is a set of constraints {C;,...,C,.}:
e C,is arelation over X,,...,Xy, denoted as Ci(X, ..., Xy);
e C; the set of combination of allowed values C; c D(X)) X ...x D(Xy).

e A solution to a CSP is an assignment of values to the
variables which satisfies (that is feasible for) all
constraints simultaneously.



Constraint Optimization Problems
.

e CSP enhanced with an optimization criterion,
e.g..
— minimum cost;
- shortest distance;
— fastest route;
— maximum profit.

e Formally, <X,D,C,f> where f is the formalization
of the optimization criterion as an objective
variable. Goal: minimize f (maximize —f).



Simple Examples
S

e \ariables e \ariables
X ={X1, Xz} X ={X1, Xz, X3}
e Domains e Domains
D(Xy) =[1..3], D(Xz) =[1..3] D(X1) = D(X;) = D(X3) = {1, 3, 5}
e Constraints e Constraints
- Ci(Xq, Xp) ={(1,2), (1,3), (2,3)}y - Xy +X,=X;
- Cy(X4, X5) ={(1,2), (2,3)} — alldifferent([X4, X5, X3])
e Solutions e Solutions
X,=1,X,=2 X1=1,X=3,X3=5

X,=2,X,=3 Xi=3,X,=1,X3=95



N-Queens
«_ _ ]

e Place n queens in an nxn board so that no
two queens can attack each other.

Q
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e Variables and Domains
- A variable for each row [X4,Xs5 ,..., X,] 2 no row attack

— Domain values [1..n] represent the columns:
e X, = means that the queen in row i is in column j

e Constraints

— alldifferent([X4, X5, ..., X;]) =2 no column attack
- foralli<j |Xi- Xj| # |i - ]| -> no diagonal attack




Sudoku
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e Variables and Domains

- 9x9 variables X for each cell with domains [1..9].
e X; = k means that the cell X; has the value k.

e Constraints

— Initial assignments. E.g., X541 =6.

— Difference constraints on all the rows, columns, and 3x3 boxes. E.g.,
alldifferent([X44, X1, Xa1, ..

e )

alldifferent([X44, X142, X43,

o X91])

alldifferent([X11, X1, Xa1, X12, X2, X3z, X143, Xz3, Xs3])



Task Scheduling

0

D
[time] >

e Schedule n tasks on a machine, in time D, by obeying the temporal
and precedence constraints:

each task t; has a specific fixed processing time p;;

each task t; can be started after its release date r;, and must be
completed before its deadline d;;

tasks cannot overlap in time;
precedence relations () must be respected.



Task Scheduling
S

e \ariables and Domains

- Start, representing the starting time of a task t;, taking a value
from [0..D].

- Ensures that each task starts at exactly one time point.

e Constraints
- Respect of release date and deadline
e forallie[1..n], r,< Start; <d,— p
- No overlap in time
o foralli<je{1, ..., n}, (Start + p; < Start; ) v (Start, + p, < Start))
- Precedence constraints
e Start; + p; < Start; for each pair of tasks t; > {



Optimal Map Colouring
S

e \What is the minimum number of colours
necessary to colour the neighbouring regions
differently?



Optimal Map Colouring
S

e Variables and Domains
— X for each of n regions with domain [1..n].
e Constraints
- Xi# X;for each neighbour region i and j
e Objective variable
— f=max(X)
e Objective: minimize f



Variables and Domains
« 00000077

e \Variable domains include the classical:
- binary, integer, continuous.

e In addition, variables may take a value from any finite set.
- e.g., Xin{a,b,c,d,e}.
e There exist special “structured” variable types.

— Set variables (take a set of elements as value).
— Activities or interval variables (for scheduling applications).



Constraints
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e Any kind of constraint can be expressed by listing all
allowed combinations.
- C(X4, X2) ={(0,0), (0,2), (1,3), (2,1)}
- Extensional representation.
— General but possibly inconvenient and inefficient with large
domains.
e Declarative (invariant) relations among objects.
- X>Y
— Intensional representation.
-~ More compact, clear but less general.



Properties of Constraints
-

e The order of imposition does not matter.
- X+Y<=Z Z>=X+Y
e Non-directional.

— A constraint between X and Y can be used to infer domain
information on Y given domain information on X and vice
versa.

e Rarely independent.

-~ Shared variables as communication mechanism between
different constraints.



Constraints — Examples
S

e Algebraic expressions
- X, > X,
= Xy + Xy =X,

e Extensional constraints (table constraints)
- (X)Y,Z2)in{(a, a, a), (b, b, b), (c, c, c)}

e Variables as subscripts (element constraints)

- Y = cost[X] (here Y and X are variables, ‘cost’ is an array of
parameters)



Constraints — Examples
S

e Logical relations
- X<Y)v(y<z)— C
e Global constraints

— alldifferent([X,, X,, X;]) instead of:
X #F Xy, Xq # X3 Xy # X3

- noOverlap([Start,, ..., Start], [P, ..., P,]) instead of:
foralli<je{1, ..., n}, (Start + p, < Start; ) v (Start; + p; < Start; )

e Meta-constraints
- 2i(Xi>t)=5



Modeling is Critical!
S

e Choice of variables and domains defines the
search space size.
= [DXq)| X [D(X2)] X ... x [D(X,)]
- Exponential in size!
e Choice of constraints defines:
- how search space can be reduced;
- how search can be guided.

e Need to go beyond the declarative specification!



Modeling is Critical
S

e Given the human understanding of a problem, we need
to answer questions like:
- which variables shall | choose?
- which constraints shall | enforce?
- can | exploit any global constraints?
— do | need any auxiliary variables?
— are some constraints redundant, therefore can be avoided?
— are there any implied constraints?
- can symmetry be eliminated?
- are there any dual viewpoints?
- among alternative models, which one shall | prefer?



Golomb Ruler

e Place m marks on a ruler such that:
- distance between each pair of marks is different;
— the length of the ruler is minimum.

e Applications in radio astronomy and information theory.
e Difficult to solve! Largest known ruler is of order 28.
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A non optimal Golomb ruler of order 4.



Golomb Ruler
«{«a 000

e Place m marks on a ruler such that:

- distance between each pair of marks is different;
— the length of the ruler is minimum.

e Applications in radio astronomy and information theory.
e Difficult to solve! Largest known ruler is of order 28.
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An optimal Golomb ruler of order 4.



Naive Model
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e \ariables and Domains
- [X4, Xy, oy X

- X, representing the position of the it mark, taking a value
from {0,1,...,2(m-1)}




Naive Model
« "/ /7

e \ariables and Domains
- [X4, Xy, ..y Xi]

- X, representing the position of the it mark, taking a value
from {0,1,...,2(m-1)}

e Constraints
- for all i1<jy, io<jp, i1 Z iy Or j1 # jo [ Xiy - Xig| # | Xiz - Xig
e Objective: minimize (max([Xy, X, .., X]))



Naive Model
« "/ /7

e \ariables and Domains
- [X4, Xy, ..y Xi]

- X, representing the position of the it mark, taking a value
from {0,1,...,2(m-1)}

e Constraints

- foralliy<jy, ix<jo, iy # i Or 1 # o [Xiq - Xjq| # | Xiz - X2
e Objective: minimize (max([X4, X,, .., X.]))
e Problematic model.

- O(m*) quaternary constraints.
- Loose reduction in domains.



Better Model
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e Auxiliary Variables

-~ New variables introduced into a model, because either:

it is difficult/impossible to express some constraints on the main
decision variables;

or some constraints on the main decision variables do not lead to
significant domain reductions.

- for alli<j Dy, representing the distance between it" and the j*"
marks.
e Constraints
- foralli<j, D; = [X;- X||
- alldifferent([D42, D43, ..., Dim-1)ml)



Better Model
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e Constraints
- for all i<j Dy = [X;- X|
- alldifferent([D4y, Dy3, ..., Dim-1ym))

e Improvements
- Quadratic O(m?) ternary constraints.
- A global constraint.



Better Model
« "/ /7

e Constraints
- for all i<j Dy = [X;- X|
- alldifferent([D4y, Dy3, ..., Dim-1ym))
- alldifferent([X4, X, ..., X,])

e Improvements
- O(m?) ternary constraints.
- A global constraint.

- Implied constraint
Logically implied by the constraints of the problem which cannot be
deduced by the solver.

Semantically redundant  (no change in the set of solutions),
computationally significant (can greatly reduce the search space)!



Improved Model
-

e Deducing information from Golomb Rulers of smaller

order

— If you consider any k consecutive marks of a Golomb Ruler of
order n > k, they form a Golomb Ruler of order k.
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An optimal Golomb ruler of order 4.



Improved Model

e Deducing information from Golomb Rulers of smaller
order

If you consider any k consecutive marks of a Golomb Ruler of
order n > k, they form a Golomb Ruler of order k.

Therefore, they must span over a distance at least as long as
the optimal size of Rulers of order k.

for all i<j  D; 2 optimal value of the ruler of order (j-i+1)



Symmetry in CSPs
.

e Creates many symmetrically equivalent
search states:

— A state leading to a solution/failure will have many
symmetrically equivalent states.

e Bad when proving optimality, infeasibility or
looking for all solutions.
- May lead to thrashing.

e Variable and value symmetry.



Symmetries and Permutation
.

e Permutation

— Defined over a discrete set S as a 1-1 function m: S — S.

— Intuitively: re-arrangement of a set of elements, e.g.,
® i 12345
o (i) 35421

e Variable Symmetry

- A permutation 1 of the variable indices s.t. for each
(un)feasible (partial) assignment, we can re-arrange the
variables according to 1 and obtain another (un)feasible
(partial) assignment.

— Intuitively: permuting variable assignments.
— 1T identifies a specific symmetry.



Variable Symmetries in Golomb Ruler
S

e Permuting variable assignments
X1=0,X,=1,X5=4,X,=6
X1=0,X,=1,X3=6,X,=4
X1=0,X,=4,X3=1,X,=6
X1=0,X,=4,X3=6,X,=1
X1=0,X,=6,X5=1,X,=4
X1=0,X,=6,X5=4,X,=1

e m! permutations = m! variable symmetries

e For a given (un)feasible assignment, there are m! (un)feasible
assignments.



Value Symmetry
S

e Value Symmetry

- A permutation 1 of values s.t. for each (un)feasible (partial)
assignment, we can re-arrange the values according to T and
obtain another (un) feasible (partial) assignment.

— Intuitively: permuting values.
— 1T identifies a specific symmetry.



A Value Symmetry in Golomb Ruler
S

e \Values can be permuted as:
020,122,22>21,323,42>5,524,6>6
(reversing the ruler)

X, =0, X,=1, X, =4, X, =6 >
X1=O,X2=2,X3=5,X4=6

Any other value symmetry in the
models we have seen so far?



Variable and Value Symmetry
S

e Composition of a variable and a value symmetry.

e Golomb Ruler
- Both variable assignments and values can be permuted.
Xi=0,X,=1,X3=4,X,=6 2X,=0,X,=2,X3=5,X,=6
2> X;=2,X,=0,X3=6,X,=5

- For a given (un)feasible assignment, there are 2*m!
(un)feasible assignments.



Symmetry Breaking Constraints
S

e Reduce the set of solutions and search space!
e Not logically implied by the constraints of the problem.

e Common technique: impose an ordering to avoid
permutations.
- E.g., Xy =X, ....sX,when [X; X,
e Attention: at least one solution from each set of
symmetrically equivalent solutions must remain.

X, ] are all symmetric.



Improved Model
-

e Symmetry Breaking Constraints
- X, <X, <L <X
_ X, =0
- D12 < Dm-1)m
e New Objective
- minimize (X,)



Improved Model
-

e Symmetry breaking constraints enable constraint
simplification.
_ X <Xy <. <X,

alldifferent([X,, X,, ..., X,,]) becomes redundant
(semantically and computationally).

for all i<j, D; = [X; - X;| becomes for all i<j, D; = X; - X

- Note the terminology redundant vs implied.



Improved Model
-

e Symmetry breaking constraints enable additional
Implied constraints.
— for all i<j<k, D; < Dy and Dy < Dy

Di = Dy + Dy
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An optimal Golomb ruler of order 4.



Can We Improve This Model Too?
S
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e Variables and Domains
- A variable for each row [X4,Xs5 ,..., X,] 2 no row attack

— Domain values {1,...,n} represent the columns:
e X, = means that the queen in row i is in column j

e Constraints

— alldifferent([X4, X5, ..., X;]) =2 no column attack
- foralli<j |Xi- Xj| # |i - ]| -> no diagonal attack



N-Queens
«_

e Diagonal attack constraint
- foralli<j |X;—Xi| # i —j|

=foralli<j X,— X # i—jand X;— X;# j—iand
Xi#i—jand X — X # |-

| —
=foralli<j Xj—i # Xj—jand X;+i# X + ]
= alldifferent([X;—1, Xo—2, ..., X,—n])

= alldifferent([X; + 1 X, + 2, ..., X, + n])



A Better Model
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e Original Model
— alldifferent([X,, X, ..., X;]) -2 no column attack
- foralli<j |Xi- X| #i-]| -> no diagonal attack

e Alldiff Model
— alldifferent([X4, Xy, ..., X.])
- alldifferent([X; +1 X, + 2, ..., X, + n])
— alldifferent([X,—1, X,—-2, ..., X,—n])



Modeling is Critical!
S

e Given the human understanding of a problem, we need
to answer questions like:
— which variables shall | choose?
- which constraints shall | enforce?
— can | exploit any global constraints?
— do | need any auxiliary variables?
— are some constraints redundant, therefore can be avoided?
- are there any implied constraints?
— can symmetry be eliminated?
— are there any dual viewpoints?
- among alternative models, which one shall | prefer?



Dual Viewpoint
S

e \iewing a problem P from different perspectives may
result in different models for P.

e Each model yields the same set of solutions.

e Each model exhibits in general a different
representation of P.

— Different variables.
— Different domains.
— Different constraints.
e Different size of the search space!

e Can be hard to decide which is better!



Symmetries of N-Queens
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e Geometric symmetries.

— Cannot impose an ordering like X; <X, .... <X,

- We need to avoid certain 7 permutations of [X,, X,, ...., X.].
- These permutations are difficult to define in the current model.




A Dual Model

e Variables and Domains
- Represent the board with n x n Boolean variables B;; € [0..1].

e Attacking Constraints
- X B; =1 onall rows and columns, ' B;; < 1 on all diagonals.

e Symmetry Breaking Constraints

Flatten the 2-d matrix to a single sequence of variables.
e E.g., append every row to the end of the first row.

Every symmetric configuration corresponds to a variable
permutation of the original solution, which is easy to define.

Impose an order between the original solution and all the
solutions obtained by the 7 permutations:

e lex<(B, m(B)) for all 1.



Lexicographic Ordering Constraint
S

e Requires a sequence of variables to be lexicographically
less than or equal to another sequence of variables.

o lexs([Y4, Yo, ..., Y\, [£4, Z>, ..., Z]) holds iff:
Y, < Z1 AND
(Yi=2Z; 2 Y,<Z,) AND
(Y= 1 AND Y,=2, 2 Y3=2Z,) ..
(Yy=2; AND Y,=2, .. Yk1—Zk19 Y= Z)
- Iex<([1 2,41,[1, 3, 3])



Symmetry Breaking in N-Queens

Q NV
= >
o lexs<(B, [B;|i,je[1..n]]) e i,j—2>],i
e lexs(B, [B;|i€[n..1],j€[1..n]]) ® i,j—>reversei,|
o lex<(B, [B;|i,je[n..1]]) ® i,j 2 reversej, reverse i
o lex<(B, [B;lie[1..n],je[n..1]]) e i,j—2I, reverse ]
[ [



Symmetry Breaking in N-Queens
-

o lexs(B, :Bji ,je[1..n]])
e lexs(B, [Bjlie[n..1],je[1..n]])
o lex<(B, [B;lie[1..n],je[n.1]])
o lexs(B, [B;lie[1..n],je[n.1]])
o lexs(B, [B;lie[n..1],je[1..n]])
o lexs(B, :Bij ,je[n.1]])
o lexs(B, :Bji ,je[n.1]])




Which Model?
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e Alldiff Model © Global constraints
~- X4, Xy, ..., X ] €[1..0] ® No easy symmetry breaking
— alldifferent([X4, Xy, ..., X.])
- alldifferent([X; + 1 X, + 2, ..., X, + n])
— alldifferent([X,— 1, X,—-2, ..., X,—n])
e Boolean Symmetry Breaking Model
- nxnB;e[0..1]
- X B;; =1 onall rows, columns

- X B; =1 ondiagonals © Easy symmetry breaking
- lex<(B, m(B)) for all ® No global constraints



Which Model?
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e Combined model
- If you can’t beat them, combine them ©

- Keep both models and use channeling constraints to maintain
consistency between the variables of the two models.

- Benefits:
e Facilitation of the expression of constraints.
e Enhanced constraint propagation.
e More options for search variables.



A Combined Model
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e \ariables
- foralli, X;e [1..n], for all i, j B; € [0..1]
e Constraints ‘\g’l
- alldifferent([X4, X,, ..., X.]) \
13 A2 “\\

— alldifferent([X;+1 X,+ 2, ..., X, + n]) @)
_ alldifferent((X;— 1. X,—2, ..., X. —n]) o(“
_ lex<(B , T(B)) for all T S

+co
e Channeling Constraints o\\o
~ for all i,in=j<—>Bij=1\)(\
©

oo




Dual Model of the Original Model?
S
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e Variables and Domains
- A variable for each row [X4,Xs5 ,..., X,] 2 no row attack

— Domain values [1..n] represent the columns:
e X, = means that the queen in row i is in column j

e Constraints

— alldifferent([X4, X5, ..., X;]) =2 no column attack
- foralli<j |Xi- Xj| # |i - ]| -> no diagonal attack



Another Dual Model
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Y1 <€ >Yn
1@
a Q Both viewpoints yield
Q the same CSP!
Q
Q
Q
n Q

e Variables and Domains
— A variable for each column [Y4,Y, ,..., Y] 2 no column attack

— Domain values [1..n] represent the rows:
e Y, =jmeans that the queen in column iis in row j

e Constraints

— alldifferent([Y4, Yo, ..., Y,]) - no row attack
- foralli<j |Yi-Yj| #[i-]| - no diagonal attack



Another Combined Model
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e Variables N
= [Xay Xoy ooy X1, [Yq, Yo oo, Y] €1..0] ‘\)\
e Constraints \)96
— alldifferent([X4, X,, ..., X.])
_ aIIdifferent([Yl Yz, . ) ‘ea\\\‘
_ foralli<j |X- X[ # i- 0\

_foralligj Y- Y #i-j] \@
e Channeling Constraints
_forallijX=jo Y=



Another Combined Model

e Variables
- X4, Xy, o0, XL, [Yq, Yy, .o, Y, ] €[1..0] ‘\
e Constraints \‘\‘x\
—alldifferent{pX s Xg—=%:1 vo
—alidifferentY. Yo Y. 1) )

~ foralli<j [X;- X| # |i - j| \“\\3“
- foralli<j |Y;- Y| #i-]|

e Channeling Constraints
- forallijX=je Y=



Another Combined Model
«{«a 000

e \ariables
= [Xay Xoy ooy X1, [Yq, Yo oo, Y] €1..0] a
e Constraints '\g °
—aldferontX; XX, A
—alldifferent(I¥ - Yo7 Y. P ‘3“

— foralli<j |Xi- X|¢|| jl
— foralli<j |Y,-Y {—#—h—hl

e Channeling Constralnts
- forallijXi=jo Y=



