
DECISION MAKING
WITH CONSTRAINT PROGRAMMING

2023/2024
Second cycle degree/two year
Master in Computer Science

Dept of Computer Science and
Engineering (DISI)

University of Bologna

Course Info

l Lecturer
– Zeynep KIZILTAN (associate professor in AI and optimization).
– Email: zeynep.kiziltan@unibo.it
– Appointment at Teams, upon request by email.

l Content
– Fundamentals of Constraint Programming (CP), a general-

purpose AI-based approach to combinatorial decision making.
l Prerequisites

– Basic computer science such as discrete mathematics, logic,
algorithms and data structures, programming.

– Prior knowledge on AI is not necessary.

mailto:zeynep.kiziltan@unibo.it

Course Info

l Timetable: September 18 – December 5
– 5 + 5 weeks

l No lecture during the weeks of October 23 and 30.
– Monday 11:00 – 13:00 (Aula Bombelli)
– Tuesday 14:00 – 16:00 (Aula E1)

l Lectures
– Theory and practice via programming exercises using personal

laptops.
– Lecture timing (please vote later in Virtuale):

l A: Start on time, finish 10 mins before?
l B: Start 10 mins later, finish on time?

Course Info

l Teaching Tools
– Virtuale platform

l Distribution of the course material (lecture slides, exercises, lecture
recordings, resources, etc).

l Communication between the students and the lecturer.
l Discussion of anything related to the course.
l Working on programing exercises interactively.
l Exchange of feedback.
l Participation to polls and informal quiz.

https://virtuale.unibo.it/

Course Info

l Teaching Tools
– Virtuale platform

l Participate now!
– Enrollment: study programme and password (230901).

l Add a profile photo for fast recognition.
l Check your UniBo email frequently!
l Check the course syllabus to program yourselves.
l Activate notifications.
l Material will be available before the lectures.

– Take a look at them in advance.

https://virtuale.unibo.it/

Course Info

l Exam
– Programming exercises.

l To complete and submit following the exercise sessions.
– Interactively with the lecturer via Virtuale.
– Try and complete each one before the next exercise session.

l First deadline for completion: November 1 (the first two
exercises)

l Final deadline for completion: December 19 (all the exercises)
– Oral exam on the course contents.

l January/February for those completed the exercises in December.
l At a later time for those completed after December and by September.
l Is not granted otherwise, need to repeat the course next year.

– Final grade in equal parts.

Course Info

l Programming Tool
– MiniZinc

l a modeling language with interfaces to several CP (and other)
solvers (https://www.minizinc.org/),

l by Monash University in collaboration with Data61 and
the University of Melbourne.

l Free and well-documented.
l Download it and start getting familiar with it.

https://www.minizinc.org/

Course Info

l Tips
– Theory lectures are important to understand the practice and for

the oral exam.
– Practical sessions are important to correctly complete the

exercises and for the oral exam.
– Participation and engagement are vital!

l Ask questions, don’t be shy J
l Follow the Virtuale page!
l Use the forum for discussions and exchange of knowledge, rather

than sending emails to the lecturer.
l Answer questions, don’t be humble J
l Submit exercises on time, long before the deadlines to for

modifications and resubmissions.

Course Info

l FAQ
– Can I follow the course via the video recordings?

l Sure, if necessary (health, work, uncancellable appointment etc) for
some lectures.

l Not recommended if you cannot participate at all.
– Remember that you cannot get engaged L

– I graduate in October, can I catch up?
l Yes! Follow the Virtuale page.

– I graduate in December, can I catch up?
l No! Please take the course next year.

Introduce Yourself

l Send a message to the discussion forum under
the topic “Hello!”.
– Name & surname.
– Exchange student or not.
– Degree programme & year.
– Bachelor background.
– Followed the course previously?
– Prior knowledge and experience with Mathematical

Programming & CP.
– Any particular situation? Especially for exchange

students.

Introduction

l Combinatorial Decision Making.
l Why with Constraint Programming (CP)?
l Overview of CP.
l Examples from MiniZinc.

Combinatorial Decision Making

l Decision making within many combinations of
possibilities subject to restrictions = constraints.
– Any solution (that meets all constraints).
– Optimal solution (best solution according to an

objective).
l Can appear under different names, e.g.,

– combinatorial optimization.
– constraint satisfaction/optimization.

l Common in our daily lives, business, industry
and science.

Hospitalization during the Pandemic

l Assign infected people to hospitals,
according to:
– severity of illness,
– patient age,
– patient location,
– hospital capacity,
– hospital equipment, etc.

l An approach like neural networks is not suitable:
– no historical data for training,
– data cleaning and consolidation is time consuming,
– a variety of architectures would need to be tested with

lengthy training sessions.

Data Analytics

Data Analytics

l AI is not just for machine learning, but also for decision support.

Link

https://cdnapisec.kaltura.com/index.php/extwidget/preview/partner_id/1773841/uiconf_id/27941801/entry_id/1_jhcj2m2f/embed/dynamic

Combinatorial Decision Making

l Properties
– Computationally difficult (NP-hard in general).
– Can only be solved by intelligent search.
– Experimental in nature.
– Finding good/optimal solutions can save time, $ and

reduce environmental impact.
l Many solution techniques

– Integer Linear Programming (ILP).
– Boolean SATisfiability, SAT Modulo Theories (SMT).
– Heuristic search methods (HS).
– Constraint Programming (CP).

Popularity of Constraint Programming

l An important and growing area of AI.
– Universities, research centers and companies (such as IBM,

Google) around the world contribute to the advancement of the
state-of-the-art.

– Many companies are applying CP successfully.
l Including IBM, Google, Ericsson, Siemens, Renault, Oracle, Sap,

Intel, Tacton.
l Technology of choice in logistics, scheduling, planning…
l A useful asset on the job market!

Example: Covid-19 Test Scheduling

l Ocado Retail Ltd, one of the world’s biggest online-only grocery
retail businesses.

l Employs over 15K people, many of them performing frontline roles
such as packing in the warehouses, delivering orders, providing
customer service in the call centers etc.

l With the pandemic, the company decided to test all frontline
employees on a weekly basis, which required scheduling the
employees at each site subject to various constraints.
– Proved difficult to solve manually.

l Data Science team developed a CP-based solution, which was
successfully used to schedule up to 3,500 employees across 4
sites (IFORS news, vol. 15, number 4, December 2020)
–

https://www.ifors.org/newsletter/ifors-news-dec2020.pdf

Example: London Bike Hiring

l AI is not just for machine
learning, but also for decision
support.
– IBM® ILOG® CPLEX®

Optimization Studio for
London bike hiring scheme

– ML to forecast and predict the
movements of bikes, customer
demand, customer behavior,
maintenance time of bikes, …

– Combinatorial optimization to
decide how to move bikes to
the stations in the best
possible way and how many
bikes to leave in each station.

Link

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://cdnapisec.kaltura.com/index.php/extwidget/preview/partner_id/1773841/uiconf_id/27941801/entry_id/1_jhcj2m2f/embed/dynamic

What is Constraint Programming?

l A declarative programing
paradigm for stating and solving
combinatorial optimization
problems.
– User models a decision problem

by formalizing:
l the unknowns of the decision à

decision variables (Xi).
l possible values for unknowns à

domains (D(Xi) = {vj}).
l relations between the unknowns à

constraints (r(Xi, Xi’)).

Problem

Model

User

Covid-19 Test Scheduling

l When and where to test each employee?
l Availability Constraints

– Testing room, tester, and employee
availabilities.

l Frequency constraints
– The spacing between tests performed on the

same employee should be within given bounds.

l Operational constraints
– Each employee should be tested within their

working shift.
– Only a limited share of employees from the

same work area should be scheduled for a test
on the same day.

What is Constraint Programming?

l A declarative programing
paradigm for stating and solving
combinatorial optimization
problems.
– A constraint solver finds a solution

to the model (or proves that no
solution exists) by assigning a
value to every variable (Xi ← vj)
via a search algorithm.

Model

Solution

Solver

Covid-19 Test Scheduling

Why Constraint Programming?

l Sounds like Integer Linear Programming.
l CP provides a rich language for expressing

constraints and defining search procedures.
– Easy modelling.

l Fast prototyping with a variety of constraints.
l Easy to maintain programs.
l Extensibility.

– Easy control of search.
l Experimentation with advanced search strategies.

Why Constraint Programming?

l Main focus on constraints and feasibility.
– Constraints à reductions in the search space.
– Of interest on tightly constrained problems.
– More constraints mean more domain reductions,

making the problem easier to solve.

Orthogonal and Complementary Approaches
to Combinatorial Optimization

l ILP
– Modeling with linear

inequalities.
– Numerical calculations.
– Focus on objective

function and optimality.
l Bounding à elimination of

suboptimal assignments.
– Exploits global structure.

l Relaxations, cutting
planes, and duality theory.

l CP
– Rich language for modeling

and search procedures.
– Logical processing.
– Focus on constraints and

feasibility.
l Propagation à elimination of

infeasible assignments.
– Exploits local structure.

l Domain reductions based on
individual constraints.

Strengths of CP

l Success on irregular problems!
– Timetabling, sequencing, scheduling allocation,

rostering, etc.
– Contain messy constraints non-linear in nature.
– Contain multiple disjunctions which result in poor

information returned by a linear relaxation of the
problem.

Weaknesses and Opportunities of CP

l Optimality
– CP: no special focus on objective function and

optimality L
– ILP: scales up on loosely constrained optimization

problems.
– HS: is effective in finding quickly good-quality

solutions.
l Best optimality approaches are often hybrids

of CP, ILP and HS.
– CP is a suitable framework for hybridization J

Overview of CP

Constraint Solver

l Enumerates all possible variable-value
combinations via a systematic backtracking
tree search.
– Guesses a value for each variable.

l During search, examines the constraints to
remove incompatible values from the
domains of the future (unexplored)
variables, via propagation.
– Shrinks the domains of the future variables.

Constraint Programming

User expresses the problem
Modelling

Constraint Programming

User expresses the problem
Modelling

Constraint Programming

Solver uses a backtracking
tree search algorithm to
guess a value for each

variable

Search

User expresses the problem
Modelling

Propagation
Solver uses algorithms to examine each
constraint to reduce the domains of the

future variables

Constraint Programming

Solver uses a backtracking
tree search algorithm to
guess a value for each

variable

Search

User expresses the problem

Solver exploits the current
search state and problem

specific knowledge to guide
the search

Search
heuristics

Modelling
Propagation

Solver uses algorithms to examine each
constraint to reduce the domains of the

future variables

Constraint Programming

Solver uses a backtracking
tree search algorithm to
guess a value for each

variable

Search

Dual Role of a Model

l Captures combinatorial substructures.
l Enables solver to reduce the search space.

– Constraints act as propagation algorithms.
– Variables’ domains act as communication

mechanism.

Search and Propagation

l Search decisions and propagation are interleaved.
Propagation

Propagation

Xi’ ← vj’

Xi ← vj

Propagation

Expectation from CP

l Declarative programming
– The user declaratively models

the problem.
– An underlying solver returns a

solution with its default search.

Reality in CP

l Modelling is critical!
– The user often has to use

advanced modelling
techniques for strong
propagation.

l Default search of the solver
is usually not enough!
– The user often has to

program the search strategy
(search algorithm, search
heuristics,…)

Place a different number in each node (1 to 8) such
that adjacent nodes cannot take consecutive numbers

A Puzzle

A Puzzle

l Place numbers 1 through 8 on nodes, s.t.:
– each number appears exactly once;
– no connected nodes have consecutive numbers.

?

?

?

?

?

?

??

Modelling

N2

N3

N4

N5

N6

N7

N8N1

l Variables: N1…N8 that represent the nodes
l Domains: the set of values {1,2,3,4,5,6,7,8} that N1..N8 can take
l Constraints: for all i < j s.t. Ni and Nj are adjacent |Ni - Nj| > 1

for all i < j Ni ≠ Nj

Backtracking Search + Heuristics

?

?

?

?

?

?

??

l Guess a value for a variable!

Backtracking Search + Heuristics

?

?

?

?

?

?

??

l Guess a value for a variable!
– We start with the hardest variables.

Backtracking Search + Heuristics

?

1

?

?

8

?

??

l Guess a value for a variable!
– We assign them the safest values.

Propagation

?

1

?

?

8

?

??

l We now examine the constraints.

Propagation

{1,2,3,4,5,6,7,8}

?

1

?

?

8

?

??

{1,2,3,4,5,6,7,8}{1,2,3,4,5,6,7,8}

{1,2,3,4,5,6,7,8}

{1,2,3,4,5,6,7,8}

{1,2,3,4,5,6,7,8}

Propagation

{3,4,5,6}

?

1

?

?

8

?

??

{3,4,5,6} {3,4,5,6}

{3,4,5,6}

{3,4,5,6,7} {2,3,4,5,6}

Backtracking Search + Heuristics

{3,4,5,6}

?

1

?

?

8

?

??

{3,4,5,6} {3,4,5,6}

{3,4,5,6}

{3,4,5,6,7} {2,3,4,5,6}

l Guess a value for a variable!

Backtracking Search + Heuristics

{3,4,5,6}

?

1

?

?

8

?

??

{3,4,5,6} {3,4,5,6}

{3,4,5,6}

{3,4,5,6,7} {2,3,4,5,6}

l Guess a value for a variable!

Backtracking Search + Heuristics

{3,4,5,6}

?

1

?

?

8

?

27

{3,4,5,6} {3,4,5,6}

{3,4,5,6}

Propagation

{3,4,5,6}

?

1

?

?

8

?

27

{3,4,5,6} {3,4,5,6}

{3,4,5,6}

Propagation

{3,4,5}

?

1

?

?

8

?

27

{3,4,5} {4,5,6}

{4,5,6}

Backtracking Search + Heuristics

{3,4,5}

?

1

?

?

8

?

27

{3,4,5} {4,5,6}

{4,5,6}
l Guess a value for a variable!

Backtracking Search + Heuristics

3

1

?

?

8

?

27

{3,4,5} {4,5,6}

{4,5,6}

Propagation

3

1

?

?

8

?

27

{3,4,5} {4,5,6}

{4,5,6}

Propagation

3

1

?

?

8

?

27

{4,5} {4,5,6}

{5,6}

Backtracking Search + Heuristics

3

1

?

?

8

?

27

{4,5} {4,5,6}

{5,6}
l Guess a value for a variable!

Backtracking Search + Heuristics

3

1

4

?

8

?

27

{4,5,6}

{5,6}

Propagation

3

1

4

?

8

?

27

{4,5,6}

{5,6}

Propagation

3

1

4

?

8

6

27

{5,6}

Propagation

3

1

4

?

8

6

27

{5,6}

Solution

3

1

4

5

8

6

27

l 8 guesses, without any backtracking!

Backtracking

?

?

?

?

?

?

??

l Back to the beginning after 45 backtracks without any solution at
hand L 1--8

1--81--8

1--8

1--8

1--8

1--8

1--8

What’s going on?

l Bad choice of variables, bad assignment of values.
à Good heuristic choice is very important!

l Good heuristics are always possible?
– Yes and no 🙃

l What can we do then?
– Apply stronger form of propagation during search!

A State During Search

3

5

?

?

?

?

?1

7--8

7--8

2,7--8

2,4,6--8

7--8

l 2 deadends after this state.
l Can be detected immediately!

A State During Search

3

5

?

?

?

?

?1

7--8

7--8

2,7--8

2,4,6--8

7--8

l Examine the constraints between the future variables.

What’s going on?

l Bad choice of variables, bad assignment of values.
à Good heuristic choice is very important!

l Good heuristics are always possible?
– Yes and no 🙃

l What can we do then?
– Apply stronger form of propagation during search!

l Is that all?
– Better modelling can result in stronger form of propagation.

Another State

4

6

?

?

?

?

?1

3,8

2,8

2,3,8

2,3,5,7,8
2,8

l Cannot detect the inconsistency of N3= 6.
– Future variables are fine wrt the constraints.

Initial Model

N2

N3

N4

N5

N6

N7

N8N1

l Constraints:
- for all i < j s.t. Ni and Nj are adjacent |Ni - Nj| > 1
- for all i < j Ni ≠ Nj

Better Model

N2

N3

N4

N5

N6

N7

N8N1

l Constraints:
- for all i < j s.t. Ni and Nj are adjacent |Ni - Nj| > 1
- alldifferent([N1, N2, N3, N4, N5, N6, N7, N8])

Another State

4

6

?

?

?

?

?1

3,8

2,8

2,3,8

2,3,5,7,8

2,8

l Examine the difference constraints between the future variables.

Another State

4

6

?

?

?

?

?1

3,8

2,8

2,3,8

2,3,5,7,8

2,8

l Propagation

Constraint Programming

l For an efficient CP solving, we need:
– effective propagation algorithms;
– a model with effectively propagating constraints;
– effective search algorithm and heuristics.

l Attention!
– Intelligent reasoning comes with a cost.
– Need a good balance.

Constraint Programming

l Declarative programming, as in ILP:
– the user models the problem;
– an underlying search-based solver returns a solution.

l Computer programming:
– the user needs to program a strategy to search for a

solution:
l search algorithm, heuristics, …

– otherwise, solving process can be inefficient.

Examples from MiniZinc

Map Coloring

l What is the
minimum number
of colors needed
to color the map?

Map Coloring

Variables & domains

Constraints

Search & objective

Data

Crypto Arithmetic

SEND + MORE = MONEY

Variables
& domains

Constraints

Search

SEND + MORE = MONEY

Variables
& domains

Search

Constraints

Knapsack

l Given items, each with
a weight and a value,
determine which item
and how many of it to
pack in your knapsack
without exceeding its
capacity while
maximizing your profit?

Knapsack

Variables
& domains

Cons.ts

Search &
objective

Data

Knapsack

Variables
& domains

Cons.ts

Search &
objective

Data

Task Assignment

Variables
& domains

Constraints

Search &
objective

Data

Task Assignment

Variables
& domains

Constraints

Search &
objective

Data

