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1 Introduction - what is constraint programming?

The combinatorial decision making is a generic problem where we have to make
a decision (obviously) within many cases of a context and with a number of
restrictions, usually called constraints. A solution can be any which meets all
constraints, but also an optimal solution according to an objective. This problem
is quite common in out daily lives, think about hospitals during covid: infected
people had to be assigned to hospitals according to some parameters like the
severity of illness, the age, the hospital resources. One can object that this can
be done with artificial intelligence, but this is very tricky, because for this specific
problem we have no data for training and, in general, neural networks are very
expensive to train, if we want something which have a useful accuracy. Decision
making is typically computationally difficult (NP-hard) and there are many
techniques to approach it: integer linear programming; boolean SATisfiability;
constraint programming. We will focus on constraint programming (CP). But
what is constraint programming? It is a declarative programming paradigm for
expressing and solving combinatorial optimization problems. These problems
have to be expressed as a model which has typically three entities:

e the unknowns, namely decision variables which we have to find a value
for;

)

e the possible values for the unknowns;
¢ relations between unknowns.

The power of CP stands in the solving, indeed, the user doesn’t have to worry
about how it can solve a problem, but just how to model it. This is possible
thanks to the solver, which, given a model for a problem, has the goal of solving
the problem, by assigning values to unknowns.

Model

|

./.\. Solver

~—

|

Solution

But how does a solver work? It uses a backtracking tree search for guessing
the values for variables and it examines model constraints to shrink domains
of decision variables in order to avoid incompatible values in the future (this
is called propagation). But these phases are separated, indeed, it interleaves
cycles of variables assigning and propagation. Modelling is critical, since the
solver depends on it.



2 Model

Now, we can formalize the concepts around CP. A constraint satisfaction pro-
blem (CSP) is a triple (X, D, C), where:

e X is a finite set of decision variables X7, ..., X,, which require a value to
be assigned to;

o D is the set of domains of X, so X; € D;(X;); each D; is supposed to be
finite;

e (' is a set of constraints, namely relations over the domains:

Ci - DJ(XJ) X ... X Dk(Xk)

A constraint optimization problem is 4-tuple (X, D,C, f), where f is an
objective variable whose value has to be optimized, namely minimizing or ma-
ximizing it.

2.1 Constraints

There are two main kinds of constraints representations:

e ecxtensional constraints which relies on the fact that any kind of con-
straint can be expressed as the set of all allowed combinations, for example
C(Xh XQ) = (07 0)7 (07 2)7 (1a 3)7 (27 1)7

e intensional constraints, namely declarative relations on involved entities,
for example X > Y.

Channeling constraints Channeling constraints makes two different models
“comunicate”, in the sense that, given two models m1 and m2 and a channeling
constraint ¢, ¢ brings what has been discovered in ml in m2 and viceversa
thanks to different propagation algorithms in different models m1 and m2. This
improves propagation because benefits from a model are brought to another
model. Think about n-queens problem where we have to place n queens in a
n X n chests board in order to they cannot eat directly any queen. We can have
different models for this problem.
First model:
X1, X €150

alldifferent([ X1, ..., X,])
alldifferent([ X1 + 1, ..., X, + n])
alldifferent([X; — 1,..., X,, — n])



Second model:
nxn Bl‘j €0,1

Y By=1,Yj€l,.,n

1€1l,...,n
E Bij =1Viel ..,n
jel,....n

Z B;; <1 on all diagonals
lex-lesser-eq(B, 7(B)), Vr

The two models represent the same problem. The first one uses variables to
represent queens positions on the board and it exploits the alldifferent con-
straint, while the second one uses a boolean matrix to represent the positions
and it exploits the lexicographic order constraint. They have different benefits
on search (not explained which benefits there, take this as granted), so how to
take advantage from both? We use a channeling constraint:

Vi,j X; =) < Bijzl

Meta-constraints A meta-constraint is a constraint occurring in another con-
straint. For example ) . (X; > t;) <= n; in this case, the inner constraint is
(X; > t;). This type of constraints is useful when we want to make choices
according to the results of other constraints.

Implied and redundant constraints An implied constraint is a semanti-
cally redundant constraint with the additional of speeding up the solver. On
the other hand, we refer to redundant constraint as a constraint which is seman-
tically redundant, but it doesn’t affect the solver performance. It happens to
have a redudant constraint » when we have another constraint s which makes
the propagation shrink the domains of variables in the same way r would do.
For example, look at this model:

include "alldifferent.mzn";
int: n;
array [0..n-1] of var 0..n-1: x;

constraint forall(i in 0..n-1)

(x[1] = sum (j in 0..n-1)(x[j] == 1i));
constraint sum(i in 0..n-1)(x[i]) = n;
constraint sum(i in 0..n-1)(x[i]l*i) = n;

solve satisfy;

In this model, we are expressing the sequence puzzle problem, namely we
want to make a sequence x with length n, where for each i € 0,....,.n—1, ¢
appears exactly x; times in the sequence x. Note that we don’t use global con-
straints. The last two constraints are implied, so they affect solver performance.
Now consider the following model:



include "globals.mzn";

int: n;
array [1..n] of var 0..n-1: x;

constraint let {
array[1..n] of 0..n-1: cover = 0..n-1
} in global_cardinality(x, cover, x);

constraint sum(i in 1..n) (x[i]) = n;
constraint sum(i in 1..n) (x[i] * (i-1)) = n;

solve satisfy;

This model is semantically equivalent to the previous one, but the first implied
constraint (so the second constraint) became redundant. This happened because
the propagation algorithm for global_cardinality_constraint is more effec-
tive than decomposition and so it “discovers” all the first (ex-)implied constraint
would do. This concept will be developed better nextly.

2.2 Symmetry

Often, when we try to solve a problem, there are many solutions which are
“symmetric”. Two solutions are symmetric if one of them is a permutation of
the other one. The solver cannot know if two solutions are symmetric and it will
look for all of them, but this is a waste of time because two symmetric solutions
are actually the same solution, they didn’t bring something new. Thus, to
avoid symmetry, we can add some constraints which somehow impose an order
in order to accept just one solution and exclude all the symmetric ones. Usually,
useful constraints are the ones of lex* family, namely constraints which pretend
lexicographic order on array of variables. Retake the example on n-queens
problem, in particular the second model:

nxn B;; €0,1

Y By=1Yj€l,...n

i€l,...,n
E Bij =1VvViel . ,n
JjeL,....)n

Z B;; <1 on all diagonals
lex-lesser-eq(B, 7(B)), Vr

Here, we are using a lex constraint to impose an order on variables in order not
to get other equivalent (mirrored) solutions:




3 Constraints propagation

Propagation is the action of restricting the domains of variables.

3.1 Local consistency

This is a form of inference which detects inconsistent partial assignments. What
is a partial assignment? An assignment is literally a choice of a value to a
decision variable:

Xi=17]

If that assignment is inconsistent, then j can be removed from D(X;) and, as a
consequence, it helps propagation. Partial is referred to the fact that only some
variables get a value in a certain moment.

3.1.1 Generalized Arc Consistency

A support (dy, ...,dx) € (D(X1), ..., D(X})) for a constraint C' is an assignment of
decision variables which satisfies C. A constraint C'is GAC iff VX; € X;, ..., X,,
Vv € D(X;), v € d, where d is a support of C. This is called Arc consistency
(AC) when k = 2.

In other words, a constraint C restricts the domains D(X;). A question
can arise: how does a constraint C grant the property of GAC for domains?
The answer is that global constraints have specialized propagation algorithms.
These algorithms tries to keep the domains of variables as restricted as possible.

3.1.2 Bounds consistency

It relaxes the domain of a decision variable X; to be in a range such that
D(X;) = [min(X;)...max(X;))

A bound support is a tuple (di,...,d;) € C where d; € [min(X;)...mazx(X;)].
C(X;,..., X)) is BCiff for all X; € X1, ..., Xk, min(X;) and max(X;) belong to
a bound support. GAC is stronger than BC, however, it’s more expensive to
achieve sometimes. Look at the following minizinc programs to solve sudoku:



include "globals.mzn";
int: n;
array[1..(n*n), 1..(n*n)] of var

% Rows must be all different
constraint forall(i im 1..(n*n))
::domain_propagation

) g

% Columns must be all different
constraint forall(j in 1..(n*n))
::domain_propagation

) §

% Squares must be all different

1..(n*n): x;

(alldifferent (x[i, ..1)

(alldifferent(x[.., jl)

constraint forall (i in 1..n) (forall (j in 1..n)
(alldifferent (x[(1+((i-1)*n))..(n+((i-1)*n)),
(1+((j-1*n)) .. (n+((j-1)*n))]1))

::domain_propagation

)5
solve satisfy;

and:

include "globals.mzn";
int: n;
array[1..(n*n), 1..(n*n)] of var

% Rows must be all different
constraint forall(i in 1..(n*n))
::bounds_propagation

E

% Columns must be all different
constraint forall(j in 1..(n*n))
::bounds_propagation

) g

% Squares must be all different

1..(n*n): x;

(alldifferent(x[i, ..])

(alldifferent(x[.., jl)

constraint forall (i in 1..n) (forall (j in 1..n)
(alldifferent (x[(1+((i-1)*n))..(n+((i-1)*n)),
(1+((j-D*n)) .. (n+((j-1D*n)) 1))

::bounds_propagation

);
solve satisfy;

and:



include "globals.mzn";
int: n;
array[1..(n*n), 1..(n*n)] of var 1..(n*n): x;

% Rows must be all different
constraint forall(i in 1..(n*n)) (alldifferent(x[i, ..1));

% Columns must be all different
constraint forall(j in 1..(n*n)) (alldifferent(x[.., j1));

% Squares must be all different
constraint forall (i in 1..n) (forall (j in 1..n)
(alldifferent (x[(1+((i-1)*n))..(n+((i-1)*n)),
(1+((j-D*n)) .. (n+((j-1D*n)) 1))
);

solve satisfy;

We try to solve it with n = 7, so we are solving a sudoku 49X49. In the first
program, we specify (or better, we suggest) to use domain propagation, namely
we keep GAC. Results are these:

ti apsed: 3s 166msec

failures=1
initTime=0.0108307
nodes=1985
peakDepth=1983
propagations=101106
propagators=147

solutions=1
solveTime=2.90563
variables=2401

end

nSolutions=1

Just 3 seconds, not bad! But when we try to use bounds propagation (namely
BC(C) or even not to suggest the propagation way (the third case), the results is
that the solver goes over five minutes with millions of failures. Clearly, this is
just a case where domain propagation is better than bounds propagation.

3.2 Propagation in action

It is the action of achieving a certain level of consistency (which is a property,
not an action). Indeed, we talk about propagation algorithms. During search,
multiple propagation algorithms can interact, usually in way that at a given
momentum, only an algorithm is running and it does it until it reaches a level
of consistency. Then, there are no other actions to do, so another algorithm
runs. An algorithm can run multiple times, since, because of propagation, the
decision variables domains change. What is important is that algorithms run
until GAC property is granted, if they can, however, GAC' is not always possible
to be kept, sometimes only BC (or other weaker consistency properties) can be
kept.



Complexity What about complexity of algorithms? Assume |D(X;)| = d,
from definitions we have that one run of C(X1, X») takes O(d?). However, we
can improve, for example there are specialized propagation algorithms which
are more efficient.

3.3 Global constraints

They are specific constraints which helps propagation and can state expressions
impossible to state with primitive constraints. Often, the propagation algori-
thms for these constraints keep GAC' in polynomial time, namely they simply
run in polynomial time and at the end of the process, the domains are exactly
the supports for constraints.

3.3.1 Counting constraints

These constraints count and restrict how many times certain values occur in an
array of variables.

3.3.2 Sequencing constraints

They ensures a sequence of variables have certain patterns.

3.3.3 Scheduling constraints

They are all about activities organization. For example, cumulative is about
assigning resources to activities and disjunctive makes activities not overlap
in time.

3.3.4 Ordering constraints

They obviously care of order of variables values. They include also lexicographic
ordering constraint.

3.3.5 Table constraint

Sometimes, we know the exact combinations of values that variables can take. In
those cases, table constraint can be really useful. An example can be crossword
puzzle:

table([ X1, X, X3], dictionary)

table([ X1, X13, X16], dictionary)
table([ X4, X5, X6, X7], dictionary)

10



3.3.6 Regular constraint

Sometimes, we need that variables follow a certain pattern. In those cases, de-
terministic finite-state automaton can be very useful, indeed, reqular constraint
is based on dfsa: regular([ X1, ..., Xx], A) holds iff (X;,...X}) forms a string ac-
cepted by A. This constraint has an efficient propagation algorithm which keeps
GAC property, however, decomposition is very efficient for this constraint as
well. The advantage over table constraint is that the latter needs all solutions
have to be computed firstly. Anyway, even if many constraints are just instan-
ces of regular, it is advisable to use specific constraints when possible, firstly for
readability of the code; regular constraint are useful for complicated patterns.

3.4 Propagation of global constraints

The propagation for global constraints is developed by decomposition into smal-
ler constraints for which the propagation algorithm is known. Generally, global
constraints integrates a specialized propagation algorithm. For example, the
alldifferent constraint propagation algorithm is based on bipartite graphs.
One part of the graph is the variables, the other part is the possible values of
the variables. A matching M in an undirected graph G is a set of edges such
that no two edges share common vertices. A maximal matching for a graph G
is a matching which is not subset of any other matching in G. The propagation
algorithm for alldifferent constraint considers edges as the assignments of
variables to the values; finding a maximal matching means finding a possible
assignment for variables. Before analyzing it, let’s give some definition:

e an edge is matching if it belongs in a matching;

e an edge is free if it is not matching;

e a node is matched if it is incident to a matching edge;

e a node is free if it is not matched;

e an edge is vital if it belongs to every maximal matching;
Let’s see the algorithm:

e compute all maximal matchings;
« if no maximal matching exists, then fail;
o if an edge is free in all maximal matchings, then:

— remove the edge;

— remove the corresponding value to the domain of the associated
variable;

o if an edge is vital, then:

— keep the edge;

— assign the corresponding value to the associated variable;

o if an edge is matching (but not vital), then keep the edge.

11



The problem with this algorithm is that calculating all maximal matchings in a
naive way is too expensive. Let’s see these further definitions:

e An alternating path is a simple path with edges alternating free and
matching;

e An alternating cycle is a path with edges alternating free and matching;

e An even path or cycle is such if the number of edges is even.

An important theorem can help us in finding maximal matchings. An edge e
belongs to a maximal matching iff for some arbitrary maximal matching M:

« either e belongs to M;
e or e belongs to even alternating path starting at a free node;

e or e belongs to an even alternating cycle.
Thus, we have to perform the following actions:

e we choose an arbitrary maximal matching M;

o all free edges in M change their direction in order to they go from values
to variables;

o all matching edges in M change their direction in order to they go from
variables to values;

o starting from a free node, search for all nodes on directed simple path and
mark all the edges;

e find the strongly connected components and mark edges which are part of
the SCCs;

e all the marked edges and the edges which are parts of M are part of
some maximal matching. Other edges are discarded and domains can be
updated.

4 Search

This phase is carried out by the constraint solver which performs a backtracking
tree search, where nodes are variables and branches are decisions on variables.
The first point to focus on is that the tree is not built immediately as whole, but
subtrees are built gradually (at the need). The search is helped by propagation:
without it, the search should build all the possible subtrees to guess a solution.

Remember that propagation and search are two different phases: propagation is
concerned with domains shrinking and it’s done when “evaluating” a constraint;
search phase is done after propagation and it is concerned with the “growing”
of the tree. Before doing search, it’s necessary to perform propagation.

12



4.1 Depth-first visit

There are two types of branching:

d-way branching for a variable X (which corresponds to a node), k branches
are created, where k is the cardinality of the actual domain of X;

2-way branching a subset S of the domain of a variable X is set, then two
branches are created, one if X € S, one if X ¢ S.

There are different types of heuristics, which are related to the choice of
variables that have to come in the next branches and their values.

Static variable ordering heuristics A variable is associated a priori to each
level of the search tree, regardless how the search will be carried out.

Dynamic variable ordering heuristics At any node, any variable can be
considered. This can be more expensive than static heuristics, but the current
state of the tree can be kept, while state heuristics cannot do this. There’s no
a best heuristics from this point of view, it depends on the problem.

Generic dynamic variable ordering heuristics There are many types of
heuristics, two of them are fail-first, namely discarding inconsistent subtrees
as soon as possible. The advantage is that making a choice like this allows
to propagation to find a larger number of inconsistent values with a greater
probability.

Minimum domain (dom) the variable to be chosen is the one with the mi-
nimum domain size.

Most constrained (deg) the variable to be chosen is the one with the greatest
number of constraints.

dom and deg are often combined to take advantages from both. A variation of
deg is the weighted degree heuristic, where weights are assigned to constraints,
initially set to 1, then during propagation of a constraint, its weight is increased
by 1 if the constraint fails. Minizinc has an annotation (dom_w_deg) which
consists in choosing the variable with the following smallest value: domain size
divided by the weighted degree, namely the number of times a variable caused
a failure earlier in the search.

4.1.1 Heavy tail behaviour

Sometimes, particular instances of a problem can be difficult to solve and they
take much more time than other instances. But this is not due to instances
directly! Sometimes, the combination of instances and heuristics make solution
of those instances difficult to find, but this can be solved by changing heuristics.
Sometimes, randomization can make problems easier to solve! Randomization
can regard parameters of heuristics in search but also the choice of variables
and even values. Restarting the search can be sometimes a good idea as well,
performing it under certain conditions, for instance when a certain amount

13



of resources have been consumed. Any kind of depth first search for solving
optimization problems suffers from the problem that wrong decisions made at
the top of the search tree can take an exponential amount of search to undo. One
common way to ameliorate this problem is to restart the search from the top
thus having a chance to make different decisions. The usefulness comes when,
at the restart, the search is performed differently. But how do we restart?

constant restart restart after using L resources;

geometric restart restart after using L resources, but setting a new limit at
the next restart, so we restart after a™ x L, where n is the number of
restarts.

Luby restart restart after using s[i] * L, where s[i] is the i-th number of the
Luby sequence which is a sequence of powers of 2, but before adding a
new power in the sequence, the previous subsequence is repeated in the
sequence, so:

1]

[1,1,2]
[1,1,2,1,1,2,4]
1,1,2,1,1,2,4,1,1,2,1,1,2,4, 8]

This is the most used.

4.1.2 Limited discrepancy search

A discrepancy is any decision in a search tree that does not follow the heuristic.
The point of LDS is that it starts with left depth-first search at the first loop,
then, if the solution is not found, the search is repeated by going at the first
right branch of each variable encountered at the previous loop.

A \
W T

Oth iteration 1st iteration 2nd iteration

3rd iteration 4th iteration

4.1.3 Depth-bounded discrepancy search

Since it is more convenient to perform discrepancy at the highest levels of the
tree instead of the deepest ones, the discrepancy performing is done a bit dif-
ferent from LDS: at the i-th iteration, discrepancy branches are visited only if
they are at the i-th level, otherwise the original heuristic is followed.

14



Oth iteration 1st iteration 2nd iteration

3rd iteration 4th iteration

The problem with LDS is that it acts on the deepest branches, but often
it is useful to make different decisions at the highest levels because the search
is less informative and the bad decisions are likely to be taken there. DDS is
better than LDS from this point of view.

4.2 Optimization problems

An optimization problem is a 4-tuple (X, D,C, f) where X, D and C are the
decision variables, domains of variables and constraints respectively while f is
an optimization criterion in the form of an objective function. For example
we can set the goal of a problem as the min f, so minimizing the value of f
(remember that f is a variable, not a function). Another way to set the goal
can be:

o defining f = maz(X);
o defining the goal as the minf.

In this way, we are searching the minimum number of f value such that it is
useful to solve a certain problem.

4.2.1 Destructive lower bound

A possible technique to solve minimization (or maximization or stuff like those)
can be searching “through the domain of f”, namely try assigning values to f at
each iteration starting from the minimum of D(f) until we reach a solution. At
each iteration, the value is increased. It is named “destructive” because interme-
diate results are discarded. The solution is proved to be optimal. Disadvantages
for this algorithm are: it’s not an anytime algorithm and it performs small steps
(just one). An advantage is that it makes constraints tighter at each iteration,
so propagation is helped. Another advantage is that it provides lower bounds.

4.2.2 Destructive upper bound

It is the same mechanism of DLB, but it starts with maxz D(f). However, when
we find a solution, it isn’t proved that it is the optimal one, so we continue to
decrease values and search solutions. When we arrive at the case where it fails
to find the solution, then the previous iteration of the current case is proven
to be the optimal solution. The pros and cons of this algorithm are exactly
complementary to DLB, namely it provides an anytime algorithm and steps are
large, but it doesn’t help propagation and it doesn’t provide lower bounds.

15



4.2.3 Binary search

The main idea is to consider upper bound and lower bound in an array (the
solutions domain). At each iteration, these bounds are restricted and come
closer in this way:

o we set Ib < f < (Ib+ ub/2), where Ib is lower bound and ub is upper
bound,;

e we try to solve the problem for that value of f;

o if the problem is feasible, then we update ub, else we update (b, in order
they take the previous value of f;

o we repeat these procedures until we reach f = [b+ 1, which is the optimal
solution.

It takes advantages from both DLB and DUB. But it’s not the best way, because
whole information is discarded at each iteration, so we are performing duplicated
work.

4.2.4 Branch and bound

It uses a single search tree, incorporating bounds in the search. At each iteration,
when a solution is found, a new bounding constraint is set to ensure the future
solutions are better, then it backtracks and looks for a new solution. This
is repeated until the problem is infeasible, at that point, the last solution is
demonstrated to be optimal. We can see an example of this in map colouring
problem:

IHF‘L\'_[JI) € {1..8} max () € {1..8}

(1.8)

We found a solution, namely 4, which is not prooved to be optimal, so we set a
bounding constraint which pretends the actual objective variable is lower than
the our last solution (lower because the actual objective variable has to be
minimized):

16



We found another solution, namely 3; at this point we would set another boun-
ding constraint and we repeat the previous steps. The advantages of this ap-
proach is that it is an anytime algorithm and there is no waste of information
from iteration to iteration. The cons are about not providing lower bounds.

5 Scheduling

It concerns with ordering resources and/or tasks over time and it has a lot of
applications. In a typical scheduling problem, we have:

e a set of resources with fixed capacities;
e a set of tasks with durations and resource requirements;

e a set of temporal constraints, for example we may want task 1 to run
before or after task 2;

« a performance metric, namely something to measure the goodness (usually
the objective variable).

In this kind of problem, usually, we have to decide when tasks have to start.
The decision variables correspond to the operations/activities to be performed.
An activity a; has: a starting time s;, a duration d; and an ending time e;. We
will refer to the earliest start time as FST;, to the latest start time as LST;, to
the earliest end time as FET; and to latest end time LET;. Note that EST;,
EET;, LST; and LET; (the latter called deadline) correspond to the possible
earliest or latest times (not necessarily the real ones). There are two types of
activity:

preemptive activities, which can be interrupted any time, thus it must holds
that s; +d; < e;

non-preemtpive activities, which cannot be interrupted by external agents
and it holds S; + dz = €;.
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A resource is something available and limited for tasks to run. We have:

cumulative/parallel resources which allow multiple activities to run at the
same time, for example, they can be a multi-core CPU. Formally, a re-
source Ty is associated to a capacity cx. Each activity a; has require-
ments rq;rz > 0 on resource 1. Clearly, it must hold rg; < cx. We
have cumulative constraint which handles the resource requirements for
activities;

unary /disjunctive/sequential resources which allow activities to execute
only one at a time regardless the resource capacity. The disjunctive
constraint handles this type of resources.

Nextly, we’ll see an example of scheduling problem at this .

5.0.1 Temporal constraints

Temporal constraints can model the fact some actvities must come before or
after other activities. But they can be finer: they can define time-legs, name-
ly they bound the difference between the end time and the start time of two
activities; they can define also time-windows, namely pretending one or more
activities runs in a certain time window.

5.0.2 Cost function

We define makespan as the completion time of the last activity. The RCP-
SP (cumulative resources) and job shop (disjunctive resources) scheduling cost
functions are makespan and the objective is usually to minimize the makespan.
A makespan can be modeled in different ways, for example introducing a dum-
my activity with duration 0 and that must run as the last activity or taking the
maximum of the starting times of activities plus their durations (obtaining the
ending times).

5.1 RCPSP
Take a look at a sample for RCPSP:

o a project graph (A, E), where A is the set of activities and E are their
ending time. The graph denotes the precedence of activities, indeed, we
usually choose one or more starting nodes ay, ..., a and one or more ending
nodes a,, ..., Gn;

e a set R of resource r; with a capacity cg;
e each activity a; has a duration d; and a resource requirement 7

We can see activities as:
duration

a requirement
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5.1.1 Search heuristics

What are best heuristics for RCPSP? We must pose the following questions:
which variable to pick next? Which value to assign? Let’s focus on the va-
lue selection. Since the makespan has to be minimized, a good choice can be
using the minimum value (the EST;). As far as variables choice is concerned,
a good choice can be selecting the one with the minimum LFET;. These are
just heuristics, so the optimal solution is not granted to be found immediately,
sometimes backtracking is necessary. Generally, since the objetive is to minimi-
ze the makespan, increasing an S; cannot improve the makespan (we say these
problems have reqular cost metrics), so a good choice is the EST; and this is
true for many scheduling problems. But this is just a greedy solution for a fast
first solution, indeed, in order to reach optimality we have to do backtracking.
How to backtrack? Given a non-optimal solution, we select an activity a; and
instead of choosing the value for that variable, we postpone it and we visit a
subtree. Doing this procedure will grant optimality, but it’s often very expen-
sive in terms of time. This technique regards both value and variable choices.
And what about variable selection? Precedence constraints help us because they
make variables domains shrink. A good greedy choice can be selecting the task
with the minimum LFET;, so the one with the first deadline in order to discard
it immediately and to have the lowest probability for it to get a blind spot (“fail
first” policy). To reach optimality, refer to the technique explained before.

6 Heuristic search

We have two types of methods to solve a combinatorial optimization problem:
complete methods, which guarantee the optimal solution to each finite-size in-
stance of a problem in a finite time; approximate methods, which don’t gua-
rantee neither optimality, nor termination in case of infeasibility, but they can
find better solutions than complete methods in a lower amount of time. We
have three types approximate methods: constructive heuristics, local search,
metaheuristics.

6.1 Constructive heuristics

This is the fastest approximation and it consists in constructing the solution
from scratch by repeatedly extending the current partial assignment until a
solution is found or the stopping conditions are satisfied. An example can be
the greedy heuristics, which don’t guarantee optimality, but even though this,
they are quick and they are used as initialization step for other methods. For
instance, in Travelling Salesman problem a greedy approach can be visiting the
unvisited city nearest (in terms of cost) to the current one:
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A greedy heuristic for this case, starting from point A can give the following
result: A— D — B — C — A. But this is not optimal! Indeed, the final distance
is 1+ 147+ 3 =12, we can find a better solution: A — C — D — B — A whose
final distance is 3+ 2+ 144 = 10.

6.2 Local search

It gives often better solutions than constructive heuristics in terms of optimality.
It starts with an initial solution and it iteratively tries to replace the current
solution a with a better “neighbourhood” (a near solution), by applying small
changes. Now we have to define what neighbourhood is, let’s see combinatorial
optimization from a different perspective: given the problem (X, D, C, f), S the
set of all solutions, we have to find s* € S such that Vs € S. f(s*) < f(s). We
define a function N : S+ p(S) that assigns to every s € S a set of neighbours
N(s) € 5. N(s) is called the neighbourhood of s. It is often implicitly defined
by defining the modifications to s to reach N(s). We now define a locally
minimal solution with respect to a neighbourhood N as a solution s’ such that
Vs € N(s'). f(s') < f(s). A structure of local search algorithm is done like this:

e Generate a solution s;
o while 35’ € N(s). f(s') < f(s), assign to s an improving neighbor.

This algorithm stops when it finds a local minimum. There are two possible
choices for the neighbor: the first one or the best one. The first solution can be
generated randomly or heuristically. But how to define neighbourhood struc-
ture? It comes useful the notion of K-exchange neighbourhood, where K is the
number of modifications to do on the graph. In the travelling salesman pro-
blem, we can have that a starting solution is a hamiltonian cycle of the graph
(a cycle where each node of a graph is visited exactly once), then if we choose
2-exchange, we have to switch two archs, if we choose 3-exchange, we have to
switch three archs, etc.. Clearly, the more K grows, the more neighbourhoods
grows exponentially. Generally, a key issue is how to define the neighbourhood.
Too small neighbourhood is fast to find, but the quality of local minima is low,
while too large neighbourhood improves the quality of local minima, but they
are expensive to calculate.

6.3 Metaheuristics

They consist in higher level strategies which “guide” heuristics to find a solution.
They can be seen, in simply terms, as heuristics on heuristics. We have two types
of policies: intensification which exploits previous experience; diversification
which explores the search space in the large. A good balance between them is
at the base of effectiveness of metaheuristics.

6.3.1 Local search methods

It is similar to local search, but differently to it, this method tries to escape
to local minimum and it does it by allowing worsening solutions, by changing
neighbourhood structure during search or by changing objective function during
search. Clearly, we have to interrupt the algorithm at a certain point since it
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cannot stop; some criteria can be: setting a maximum CPU time, limiting the
number of iterations, etc.. Here some methods.

Simulated annealing Like local search, but it accepts worsening moves with
a certain probability. The probability decreases at each iteration. It favours

intensification over diversification.

Variable neighbourhood search It changes neighbourhood structure du-
ring search, more precisely this happens whenever a new local optima is reached.

v“\ J

solution space solution space

bjective function
=2
bjective function

Tabu search It keeps track of a “tabu list” of solutions or moves and it forbids
them. So it doesn’t change the neighbourhood, but it restricts the neighbors
which it can move to. Anyway, storing solutions is very inefficient, moves are
cheaper even if that could eliminate good solutions which haven’t been visited
yet. The tabu list size is another important issue: the more it’s big, the more
diversification grows against intensification. In general, the size can be increased
in case of repetitions (so when diversification is needed) or decreased when there
are no improvements (so intensification is needed).

Guided local search It changes the objective function. But one could ar-
gue it changes the semantics of the claimed solution! The idea is to penalize
some solution characteristics which occur frequently, so the result is that some
solutions get worse than how they are really.

6.3.2 Population-based methods

We work on a set of solutions and the basic principle is to find common charac-
teristics among solutions. We have a probabilistic model from which we obtain
sample solutions to analyse. After this analysis, we update our model and we
restart the process. This process is similar to what ants do when they come
across an obstacle: the divided groups of ants will try to find a path to escape
from the obstacle, in order to gather with other groups; ants follow the pa-
ths with the highest concentration of pheromones which are dropped always by
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ants, so they will automatically gather with other ants by taking the shortest
path, because it is the one which is nearest to the pheromones of other ants.
From this phenomenon, we have the so-called pheromone model: we have a set
of pheromone values which act as the memory with the goal to focus the search
on certain paths. A way to make this concept formal can be: a pheromone
value is a value 7(X;,v;), VX; € X and v; € D(X;), and this value represents
the desirability of assigning v; to X;. A common usage is to have bounding
for pheromone values 7y, and Ty,q: and to set initially values to T4 As a
consequence, we have that decreasing values augments diversification because,
we will have different values from what we have had before (so it’s like ants
forget older solutions to get close to newer solutions), while increasing will help
intensification. In order to begin, we use “artificial ants”. They simply consist
in using constructive heuristics for an initial solution. So the algorithm has the
following schema:

e start from an initial solution, using constructive heuristics;

o iteratively choose a variable X; according to some heuristic (this is para-
metric) and then choose the value v; € D(X;) according to the probability:

— Heuristic
p(zi,v;) = [7(zi, vi)]* ([n(xi,mﬂi/ factor
P el ) s, v)P

where o and (8 are parameters used to balance the pheromone and heuristic
factors.

Pheromone values in the i-th round are the ones which comes from the previous
round (namely (¢ — 1)-th round) solutions. Then, at each round, pheromone
values are updated. If they are decreased, diversification is boosted, else if they
are increased, then intensification is boosted. The update is done in order to
improve the quality of future solutions. At the end, which one to use? Local
search metaheuristics or population-based metaheuristics? It depends on the
problem. If in the problem, moving from neighbor to neighbor is easy and cheap
in terms of computational cost, then local search-based algorithms is good. On
the other hand, if neighbourhood is difficult to build, the cost of moves is not so
cheap and solutions can be built as composition of blocks, then population-based
methods is a good idea. Generally, local-based methods boost intensification
because we act on subsets of all solutions, while population-based methdos have
the ability to boost diversification (always according to how the pheromones
are updated). Hybrid methods tries to get the best from both methods types.
Metaheuristics is effective in finding first good-quality solutions, but it struggles
with complex constraints. For this reason, mixing metaheuristics and complete
methods in different ways can improve the quality of solutions in a time unit,
since complete methods, on the other hand, can be bad and inefficient if we
have loose bounds of objective function. For example, a complete method can
apply a metaheuristic to improve a solution or, on the contrary, metaheuristics
use a complete methods to efficiently to explore neighbourhood.
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Large neighbourhood search And local search? How can it be combined
with complete methods? Remember the issue about small and large neighbou-
rhoods; from this point, we can use large neighbourhood and explore it with a
complete method. We can see exploration of neighbourhood as the solution of
a sub-problem. So, given a solution s, we have two possible moves to apply to
each variable:

o fix part of the variables value;

e relax the remaining variables.

s > [1]ef[7]2]3]8]s]6]9]
rog 1 To Ty T3 Ty Tg L7 T

Ns)> [lel7] [s] [ | [e]

W

The good fact about this neighbourhood structure is that it works with all
problems. Now, two issues are: which percentage of variables to fix? Which
variables to fix? There are many ways to follow and it can depend from the
problem. Generally, after wee saw all these different methods, the important
thing is to know how to mix these methods; to fix an optimization problem, the
general good way is to use a hybrid method.
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