
Cryptography

Academic Year 2024-2025

Homework 2

Michele Dinelli, ID 0001132338

November 18, 2024

Exercise 1.
Given G as a fixed pseudorandom generator with expansion factor ℓ and two algorithms Gen

and Mac defined as:

• Gen on input 1n outputs a binary string k drawn uniformly at random from {0, 1}n

• Mac on input k ∈ {0, 1}n and m ∈ {0, 1}ℓ(n) draws at random r ∈ {0, 1}ℓ(n) and outputs the
pair ⟨r,G(k)⊕m⊕ r⟩

It is required to give a definition of the algorithm Vrfy such that MAC Π = (Gen,Mac,Vrfy) is
at least correct. It is also required to check if Π is eventually secure.

On the implementation and correctness of Vrfy.

• Vrfy is an algorithm that accepts three inputs: a key k ∈ {0, 1}n a message m ∈ {0, 1}ℓ(n)
and a tag t which consist of a pair namely ⟨r,G(k)⊕m⊕ r⟩. It outputs a boolean b.

MAC Π is correct if and only if Vrfy(k,m,Mac(k,m)) = 1. Vrfy can be formalized as the following
algorithm:

Vrfy(k,m, ⟨r, t⟩):
1 : if |m| ≠ |r|
2 : return 0

3 : endif

4 : t′ ← G(k)⊕m⊕ r;

5 : return t
?
= t′

Vrfy algorithm has to recompute the tag t and can’t really use Mac algorithm because of the
randomness of the variable r. We can say that using the Vrfy defined above will always return
true for valid tags generated by Π so the resulting MAC Π = (Gen,Mac,Vrfy) is correct.

On the security of MAC Π.
MAC Π is secure iif for every PPT adversary A exists a negligible function ε ∈ NGL such that

Pr(MacForgeΠ,A(n) = 1) = ε(n) (1)

where MacForgeΠ,A is defined and shown below:

MacForgeΠ,A(n):

1 : k ← Gen(1n);

2 : (m, t)← A(1n,Mack(·));
3 : Q← {m | A queries Mack(·) on m};
4 : return (m /∈ Q ∧ V rfy(k,m, t) = 1))

1

MAC Π is not secure because it is possible to define and adversary A in the sense of the
experiment MacForge which has non-negligible probability of success. The adversary A has given
access to an oracle O for Mack(·) and can be built as follows:

A(1n,Mack(·)):
m0 ← {0, 1}ℓ(n);

⟨r, t⟩ ←Mack(m0);

G(k)← t⊕m0 ⊕ r;

m1 ← {0, 1}ℓ(n);

r′ ← {0, 1}ℓ(n);

t′ ← G(k)⊕m1 ⊕ r′;

return ⟨m1, ⟨r′, t′⟩⟩

G(k) can be inferred and the random variable r does not introduce any randomness actually
because it is an internal state of Mac but has to be exported in order to make Vrfy algorithm work.
Given the adversary A it can be observed that

Pr(MacForgeΠ,A(n) = 1) = 1 > ε ∀ε ∈ NGL

because the message m1 has not been used by A for any oracle queries (m1 /∈ Q = {m0}) and
Vrfy(k,m, t) = Vrfy(k,m1, ⟨r,m1, G(k)⊕m1 ⊕ r) = 1. So MAC Π can not be considered a secure
authentication scheme.

Exercise 2.
Given Gen defined as above and F as a pseudorandom function it is required to consider the

three following functions H1, H2 and H3 and to verify which one among (Gen,H1), (Gen,H2),
(Gen, H3) are collision resistant hash-functions 1.

Hs
1(x · y) = x⊕ y ⊕ s Hs

2(x · y) = Fs(x⊕ y) Hs
3(x · y) = Fs(x)⊕ y

A hash function Π = (Gen,H) is collision-resistant if and only if for every PPT adversary A
exists a negligible function ε ∈ NGL such that

Pr(HashCollΠ,A(n) = 1) ≤ ε(n) (2)

where HashCollA,Π is defined as follows

HashCollΠ,A(n):

1 : s← Gen(1n);

2 : (x, y)← A(s);

3 : return (x ̸= y) ∧ (H(x) = H(y))

• Hs
1 is not a collision-resistant hash function because it is possible to define and adversary A

in the sense of experiment HashColl with non-negligible probability of success.

A(s):

x← {0, 1}|s|;
y ← {0, 1}|s|; // such that x ̸= y

return ⟨(x · y), (y · x)⟩
1Here x · y is the concatenation of x and y

2

Given the definition of A and considering Π = (Gen,H1) it can be observed that

Pr(HashCollΠ,A = 1) = 1 > ε ∀ε ∈ NGL

because the two messages namely m1 = x · y and m2 = y · x have the same resulting
hash Hs

1(m1) = Hs
1(m2) but m1 ̸= m2. More in general for any pair (x, y) and (x′, y′) if

x⊕ y = x′ ⊕ y′ then Hs
1(x · y) = Hs

1(x
′ · y′).

• Hs
2 is not a collision-resistant hash function because it is possible to define and adversary A

in the sense of experiment HashColl with non-negligible probability of success.

A(s):

x← {0, 1}|s|;
y ← {0, 1}|s|; // such that x ̸= y

return ⟨(x · y), (y · x)⟩

Given the definition of A and considering Π = (Gen,H2) it can be observed that

Pr(HashCollΠ,A = 1) = 1 > ε ∀ε ∈ NGL

because the two messages namely m1 = x · y and m2 = y · x have the same resulting hash
Hs

2(m1) = Hs
2(m2) but m1 ̸= m2. Although F is a pseudorandom function it still has to

produce the same output for the same input if used with the same key. Exploiting the fact
that x⊕0 = x it is possible to produce two different messages that result in the same input for
F . More in general for any pair (x, y) and (x′, y′) if x⊕y = x′⊕y′ then Hs

2(x·y) = Hs
2(x

′ ·y′).

• Hs
3 is not a collision-resistant hash function because it is possible to define and adversary A

in the sense of experiment HashColl with non-negligible probability of success.

A(s):

x← {0, 1}|s|;
y ← Fs(x);

x′ ← {0, 1}|s|;
y′ ← Fs(x

′);

return ⟨(x · y), (x′ · y′)⟩

Given the definition of A and considering Π = (Gen,H3) it can be observed that

Pr(HashCollΠ,A = 1) = 1 > ε ∀ε ∈ NGL

because the two messages namely m1 = x · y and m2 = x′ · y′ have the same resulting hash
Hs

3(m1) = Hs
3(m2) but m1 ̸= m2. It is clear that when Hs

3 is fed with (x · Fs(x)) and then
with (x′ · Fs(x

′)) produce a collision in particular 0|s| 2.

Exercise 3.
Given a hash function Π = (Gen, H) for messages of length ℓ(n) it is possible to formalize the

notion of second pre-image resistance through the experiment HashSec defined as follows:

2Or more generally 0ℓ(n) where ℓ is a polynomial such that Hs
3 returns a string of length ℓ(n) where n is the

implicit parameter in s

3

HashSecΠ,A(n):

1 : s← Gen(1n);

2 : x← {0, 1}ℓ(n);

3 : y ← A(s, x);
4 : return (x ̸= y) ∧ (Hs(x) = Hs(y))

Π is said to be second pre-image resistant if and only if for every PPT adversary A there is a
negligible function ε ∈ NGL such that

Pr(HashSecΠ,A(1
n) = 1) = ε(n) (3)

It is required to prove that collision resistance implies second pre-image resistance. About
collision resistance the hypothesis is that for every PPT adversary B there is a negligible function
ε ∈ NGL such that

Pr(HashCollΠ,B(1
n) = 1) = ε(n) (4)

It is possible to proceed with a proof by reduction: it is assumed the existence of a PPT
adversary A for Π that can find a collision in the sense of the experiment HashSec. Out of any
successful adversary A we build and adversary B that uses A as a subroutine.

∀B ∈ PPT.¬CollHashColl(B,Π) ⇒ ∀A ∈ PPT.¬CollHashSec(A,Π)

⇓
∃A ∈ PPT.CollHashSec(A,Π) ⇒ ∃B ∈ PPT.CollHashColl(B,Π)

where A is an adversary for Π in the sense of the experiment HashSec and B is an adversary
for Π in the sense of the experiment HashColl (alg. 1). It is possible to formalize the adversary B
as follows:

B(s):
x← {0, 1}ℓ(n);

y ← A(s, x);
return (x, y)

If A succeeds (i.e. it finds y ̸= x such that Hs(y) = Hs(x)), then B succeeds too, thereby
succeeding in the experiment HashColl. Since B succeeds using A as a subroutine it must have
probability of succeeding equals to ε (eq. 3).

Pr(HashSecA,Π(1
n) = 1) = Pr(HashCollB,Π(1

n) = 1) = ε(n)

If ε is not negligible we would have a contradiction with eq. 4 because B would be constructed
as a PPT adversary in the sense of experiment HashColl that has non negligible probability of
finding a collision, so ε must be negligible. Hence if Π is collision resistance is also second pre-
image resistance.

4

