Cryptography

Academic Year 2024-2025

Homework 1

Michele Dinelli, ID 0001132338

October 17, 2024

Exercise 1.

We want to prove that any instance of an encryption scheme Π^G composed by three spaces $\mathcal{K}, \mathcal{M}, \mathcal{G}$ such that $\Pi^G = (Gen, Enc, Dec)$ with $Enc(k, m) = G(k) \oplus m$ and G is a pseudorandom generator is not perfectly secure. Let's check if for Π^G holds

 $|\mathcal{K}| \geq |\mathcal{M}|$

If G is a pseudorandom generator then it means it's a deterministic algorithm that given as input $s \in \{0,1\}^n$ outputs a string $G(s) \in \{0,1\}^{\ell(|s|)}$ where ℓ is a polynomial defined as $\ell : \mathbb{N} \to \mathbb{N}$. It's noticeable that G accepts at maximum 2^n inputs and because of that generates at maximum 2^n strings of length l(|s|) while the number of possible strings of length $\ell(|s|)$ is $2^{l(|s|)}$. Since it is required for a pseudorandom generator that $\forall n \in \mathbb{N}, \ \ell(n) > n$ we conclude that regarding Π^G we have

$$|\mathcal{K}| < |\mathcal{M}|$$
 since
 $|\mathcal{K}| = 2^n$ and $|\mathcal{M}| = 2^{\ell(n)}$

To prove that Π^G is not perfectly secure, we must rely on the property of pseudorandom generators that ensures the output length $\ell(n)$ exceeds the input length n, where $\ell : \mathbb{N} \to \mathbb{N}$ is a polynomial such that $\forall n \in \mathbb{N}, \ \ell(n) > n$.

Exercise 2.

The exercise consists of considering the following functions and demonstrating that none of them are pseudorandom generators.

$$G_1(x) = x \cdot \bigoplus_{i=1}^{|x|} x_i$$
 $G_2(x) = F(0^{|x|}, x)$ $G_3(x) = F(x, x) \cdot x$

• $G_1(x)$ is not a pseudorandom generator because it is easily distinguishable from a true random source. To prove that $G_1(x)$ is not a pseudorandom generator we have to define a distinguisher D such that |Pr(D(s) = 1) - Pr(D(G(r)) = 1)| is not negligible. We define D as follows:

$$D(x):$$

$$w \leftarrow \bigoplus_{i=1}^{|x-1|} x_i;$$

$$z = x|_{|x-1|};$$
Return 1 if $(w \cdot z) = x$

Observing that

$$\Pr(D(G_{1}(r)) = 1) = 1$$

$$\Pr(D(s) = 1) = \frac{1}{2^{n}}$$

$$|\Pr(D(G_{1}(r)) = 1) - \Pr(D(s) = 1)| = 1 - \frac{1}{2^{n}}$$
which is not negligible
(1)

- $G_2(x)$ uses a pseudorandom function to produce its output. F(k, x) should take k among all strings of length |x| randomly. Defining F(k, x) with $k = 0^{|x|}$ means that the key is fixed and that is not ideal. Furthermore, if F is a pseudorandom function than it is length preserving i.e F(k, x) is defined iff |k| = |x| and in that case |F(k, x)| = |x|. Just observing that we can conclude that $G_2(x)$ is not a pseudorandom function since its expansion factor does not satisfy $\ell(n) > n$, $\forall n \in \mathbb{N}$. $G_2(x)$ does not expand x in any way $(G_2(x) \in \{0, 1\}^{|x|})$.
- $G_3(x)$ is not a pseudorandom function because from the output of $G_3(x)$ could be immediately extracted the original input x from the last n bits. To prove that $G_3(x)$ is not a pseudorandom generator we have to define a distinguisher D such that |Pr(D(s) = 1) Pr(D(G(r)) = 1)| is not negligible. We define D as follows:

$$D(x):$$

$$n \leftarrow \ell^{-1}(|x|);$$

$$z \leftarrow \text{last } n \text{ bits of } x;$$

$$o \leftarrow \mathcal{O}(z);$$
Return 1 if $o = x|_n$

where \mathcal{O} is an oracle for F. D extracts the last n = |x| bits of $G_3(x)$ and query an oracle on F with them. Then check if the output of the oracle is equal to the first n bits of x. If are equal D can distinguish between a true random and $G_3(x)$ in a similar way to eq. 1.

$$Pr(D(G_3(r)) = 1) = 1 \text{ if } D \text{ receives } G_3(x) \text{ so the oracle behaves like } F(x, x)$$

$$Pr(D(s) = 1) = \frac{1}{2^n}$$

$$|Pr(D(G_3(r)) = 1) - Pr(D(s) = 1)| = 1 - \frac{1}{2^n}$$
which is not negligible
$$(2)$$

The exercise 2 asks also to prove that none of the following binary functions is a pseudorandom function.

$$F_1(k,x) = k \oplus x$$
 $F_2(k,m) = G(m)|_{|k|}$ $F_3(x) = G(k)|_{|m|}$

• $F_1(k, x)$ is not a pseudorandom function because a distinguisher D can trivially recover the key xoring the output of $F_1(k, x)$ with x i.e $k = F_1(k, x) \oplus x$. To prove that $F_1(k, x)$ is not a pseudorandom function we have to define a distinguisher D such that $|\Pr(D^{F_k(\cdot)}(1^n) = 1) - \Pr(D^{f(\cdot)}(1^n) = 1)|$ is not negligible.

$$D(1^{n}):$$

$$m_{0} \leftarrow 0^{n};$$

$$m_{1} \leftarrow 1^{n};$$

$$o_{0}, o_{1} \leftarrow \mathcal{O}(m_{0}), \mathcal{O}(m_{1});$$

$$w \leftarrow o_{0} \oplus o_{1};$$

Return 1 if $w = 1^{n}$

D can query the oracle \mathcal{O} twice with $m_0 = 0^n$ and $m_1 = 1^n$ obtaining o_1 and o_2 . Then *D* checks if $o1 \oplus o2 = 1^n$ returning 1 if it is the case since $(k \oplus 0^n) \oplus (k \oplus 1^n) = 1^n$.

$$\Pr(D^{F_k(\cdot)}(1^n) = 1) = 1$$

$$\Pr(D^{f(\cdot)}(1^n) = 1) = \frac{1}{2^n}$$

$$|\Pr(D^{F_k(\cdot)}(1^n) = 1) - \Pr(D^{f(\cdot)}(1^n) = 1)| = 1 - \frac{1}{2^n}$$
which is not negligible
(3)

• $F_2(k, x)$ outputs a string of length |m| since |k| = |m| for pseudorandom functions so the key is kind of useless. To prove that $F_2(k, x)$ is not a pseudorandom function we have to define a distinguisher D such that $|\Pr(D^{F_k(\cdot)}(1^n) = 1) - \Pr(D^{f(\cdot)}(1^n) = 1)|$ is not negligible.

$$D(1^{n}):$$

$$m \leftarrow 1^{n}$$

$$o \leftarrow \mathcal{O}(m);$$

$$g \leftarrow G(m);$$
Return 1 if $o = g$

D query an oracle with an arbitrary message m then query G(m) alone since we assume it is public for Kerckhoffs' principle. D compares the output of the oracle with G(m), if are equals then D distinguishes with very high probability $F_2(k,m)$ from a true random string s. What could happen is that G(m) outputs the same value of a true random f but it is very unlikely.

$$\Pr(D^{F_k(\cdot)}(1^n) = 1) = 1$$

$$\Pr(D^{f(\cdot)}(1^n) = 1) = \frac{1}{2^n}$$

$$|\Pr(D^{F_k(\cdot)}(1^n) = 1) - \Pr(D^{f(\cdot)}(1^n) = 1)| = 1 - \frac{1}{2^n}$$
which is not negligible
(4)

• $F_3(k, x)$ could not be a pseudorandom function because returns always a pseudorandom generator applied to the key ignoring the message. As long as |m| remains constant, $F_2(k, x)$ will always output the same truncated portion of G(k), which is trivial to distinguish from a truly random function. To prove that $F_3(k, x)$ is not a pseudorandom function we have to define a distinguisher D such that $|\Pr(D^{F_k(\cdot)}(1^n) = 1) - \Pr(D^{f(\cdot)}(1^n) = 1)|$ is not negligible.

$$D(1^{n}):$$

$$m_{0}, m_{1} \leftarrow 1^{n}, 0^{n};$$

$$o_{0}, o_{1} \leftarrow \mathcal{O}(m_{0}), \mathcal{O}(m_{1});$$

Return 1 if $o_{0} = o_{1}$

A distinguisher D could query an oracle two times with 2 arbitrary messages m_0 and m_1 , then checks if the results are equals returning 1 and distinguishing $F_3(k, x)$ from a true random f with very high probability in a similar way to eq. 3 and 4.

Exercise 3.

Given $\Pi = (Gen, Enc, Dec)$, $\Pi_{H,J} = (Gen, Enc, Dec)$, H, G two permutations (bijective and inversible) and $Enc_{H,J}(k, m)$ and $Dec_{H,J}(k, c)$ are defined as follows.

$$Enc_{H,J}(k,m) = J(Enc(k,H(m)))$$
 $Dec_{H,J}(k,c) = H^{-1}(Dec(k,J^{-1}(c)))$

It is required to prove that if Π is correct and secure against passive attacks, then $\Pi_{H,J}$ is also correct and secure against passive attacks. On the correctness of $\Pi_{H,J}$ we can observe that:

 $\Pi_{H,J}$ is correct.

On the security against passive attacks of $\Pi_{H,J}$. Let's proceed with a reduction proof: the goal is to show that if the transformed scheme $\Pi_{H,J}$ can be broken, then the original scheme Π can be broken. We want to prove that

 Π correct and secure against $eav \Rightarrow \Pi_{H,J}$ correct and secure against eav

We can try to build an adversary that succeeds in breaking $\Pi_{H,J}$ and use it as a subroutine to build an adversary that succeeds in breaking Π .

Let's look at the experiment $\mathsf{PrivK}_{B,\Pi}^{eav}$ defined using \mathcal{A} as a subroutine (pseudocode 1 and pseudocode 2). The adversary \mathcal{B} interacts with the original encryption scheme Π , but it internally uses \mathcal{A} to distinguish between encrypted messages. \mathcal{B} transforms the messages by applying the bijection H, and it transforms the ciphertexts by applying J^{-1} before passing them to \mathcal{A} . Thus, \mathcal{B} simulates the environment of $\Pi_{H,J}$ for \mathcal{A} , making \mathcal{A} think it is interacting with $\Pi_{H,J}$ when in fact it is interacting with Π . The adversary \mathcal{B} succeeds in breaking the security of Π whenever \mathcal{A} succeeds in breaking $\Pi_{H,J}$.

 $\overline{\text{Algorithm 1 PrivK}^{eav}_{A,\Pi_{H,J}}}$

 $\begin{aligned} k \leftarrow Gen(1^n) \\ m_0, m_1 \leftarrow \mathcal{A}(1^n) \\ \text{if } |m_0| \neq |m_1| \text{ then} \\ \text{ return } 0 \\ \text{end if} \\ b \leftarrow \{0, 1\} \\ c \leftarrow Enc_{\Pi_{H,J}}(k, m) \\ b^* \leftarrow \mathcal{A}(c) \\ \text{ return } \neg (b^* \oplus b) \end{aligned}$

Algorithm	2	$PrivK^{eav}_{B,\Pi}$
-----------	----------	-----------------------

,	
$k \leftarrow Gen_{\Pi}(1^n)$	
$m_0, m_1 \leftarrow \mathcal{B}(1^n)$	
$m_0, m_1 \leftarrow H(m_0), H(m_1)$	
$\mathbf{if} \ m_0 \neq m_1 \ \mathbf{then}$	
return 0	
end if	
$b \leftarrow \{0, 1\}$	
$c \leftarrow J^{-1}(Enc_{\Pi}(k, m_b))$	\triangleright Notice H has been applied to m_b
$b^* \leftarrow \mathcal{A}(c)$	
$\mathbf{return}\ \neg(b^{*}\oplus b)$	

It is assumed to be secure against passive attacks i.e $Pr(\mathsf{PrivK}_{B,\Pi}^{eav}) = \frac{1}{2} + \epsilon(n)$ where $\epsilon(n)$ is negligible, the same for the experiment $\mathsf{PrivK}_{A,B}^{eav}$ since the two experiments are basically the same. Since the existence of an adversary \mathcal{A} that breaks $\Pi_{H,J}$ implies the existence of an adversary \mathcal{B} that breaks Π , we conclude that if Π is secure against passive attacks, then $\Pi_{H,J}$ must also be secure against passive attacks.

On the security against cpa attacks of $\Pi_{H,J}$. If Π is probabilistic, then $\Pi_{H,J}$ can also be considered secure against CPA attacks, assuming that the transformations H and J do not undermine that property.