Cryptography Academic Year 2024-2025 Homework I October 8th, 2024

Please notice that:

- Exercises are meant to be solved *individually*.
- Solutions should be typeset in IAT_EX, and uploaded, in pdf format, to http://virtuale.unibo.it. Students are encouraged to use the template Homework-template-2425.tex, which can be retrieved from http://virtuale.unibo.it itself.
- The deadline for uploading the solutions is Monday, October 14th, at midnight CET.

Exercise 1.

Consider the the encription scheme Π^G as we introduced it in the course. In that encryption scheme, Enc(k,m) is defined as $G(k) \oplus m$, where G is a pseudorandom generator. Prove that any instance of Π^G obtained by fixing the value of the security parameter is *not* perfectly secure. In doing so, which ones of the three requirements about pseudorandom generators (i.e. being polytime, having a nontrivial expansion factor, being indistinguishable from a source of true randomness) are actually necessary?

Exercise 2.

Consider the following functions, and prove that none of them is a pseudorandom generator:

$$G_1(x) = x \cdot (\bigoplus_{i=1}^{|x|} x_i)$$
 $G_2(x) = F(0^{|x|}, x)$ $G_3(x) = F(x, x) \cdot x$

where \cdot is string concatenation, \oplus is the exclusive or boolean operator, and F is a pseudorandom function. Similarly, prove that none of the following binary functions is a pseudorandom function:

$$F_1(k,x) = k \oplus x$$
 $F_2(k,m) = G(m)|_{|k|}$ $F_3(k,m) = G(k)|_{|m|}$

where G is a pseudorandom generator and $s|_n$ denotes the prefix of the binary string s having length equal to $n \in \mathbb{N}$.

Exercise 3.

A length-preserving function H on binary strings is said to be an efficiently computable permutaion if it is bijective and both H and its inverse H^{-1} can be computed in deterministic polynomial time. Given a private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ and two efficiently computable permutations H, J, write $\Pi_{H,J}$ for the encryption scheme (Gen, $\text{Enc}_{H,J}, \text{Dec}_{H,J}$) such that

$$Enc_{H,J}(k,m) = J(Enc(k,H(m)))$$
 $Dec_{H,J}(k,c) = H^{-1}(Dec(k,J^{-1}(c)))$

Prove that if Π is correct and secure against passive attacks, then $\Pi_{H,J}$ is also correct and secure against passive attacks. How about CPA-security?