```
THEOREM
       IF F IS A PRF, THEN THE MAC TIF IS SECURE PROOF SKETCH.
              THIS REQUIRES BUILDING AN IDEALIZED MAC TI,

THIS REQUIRES BUILDING AN IDEALIZED MAC TI,

WHICH IS A VARIATION ON TIE IN WHICH GEN
INSTEAD OF SAMPLING K UNFRONCY AT RANDOM,

GENERATES A PUNCTION FROM 1933" TO ITSELF AT

RANDOM OF COURSE, THEN MSC (M, 1/4), P. (M)

WE CAN PROVE THAT TI IS SECURE, BERFUSE

GWESSING THE VALUE OF MAC(C, M) WITHOUT

RUOWING ANYTHING ABOUT A(M) IS SHAPLT IMPOSSIBLE

(UNICESS WITH MEGLIGHBLE PROBABILITY).

WE HAVE SOMEHON TO "COMPARE" TIP AND TI,

AND PROVE THAT THET DO NOT BEHAVE SO DIFFERENTLY,

UNICESS F IS NOT PSEVDORAMOM

AS USVAL, THEN, WE GUILD A DISTINGUIREMENT
                  AS USUAL, THEN, WE BUILD A DISTINGUISHER DA
                  FOR F USING AN ADVERSART A FOR TIP AS
               'A SUBROUTINE, AND FOLLOWING THE IDEA THAT
DA SHOULD CALL A IN SUCH A WAY AS TO PRETEND
A IS RUNNING AS PART OF MICROSPEART
                  IN DOING SO, WE GET THESE TWO EQUATIONS
                          Pr ( DA (2) 2) = Pr (M, E Forge A, TF (N) 2)
                            Pr (DA (1")=1)= Pr (Mac Forge A, " (n)=1) = E(n) (xx)
                    IF, NOW TIE IS NOT SECURE , NAMELY
                               Pr(MJC Forge AITF (N)=2) = y(N) YEGLIGIBLE
                     THEN WE WOULD HAVE THAT
                           \left| \Pr \left( D_A^{\frac{2}{3} \binom{1}{3}} (A^*) \cdot 2 \right) - \Pr \left( D_A^{\frac{1}{3} \binom{1}{3}} (A^*) \cdot 2 \right) \right| = 87 \text{ (c) } AND \text{ (**)}
                  IF TI IS A SECURE MAC AND H IS A COLLISION-RESISTANT HASH FUNCTION, THEN TI" IS SECURE ITSEEF AS A MAC.
                                      PROOF

AS A RECAP, TI IS DEFINED AS (Gen", Me", Nefy")

WHERE Mao" (cs, ke, m) = Mac (k, He (m))

BEFORE DOING THE ACTUAL REDUCTION, LET US

ANALYSE THE STIVATION FROM THE MOINT OF

VIEW OF AN ADVERSARY A FOR TI". A. CAN QUERY

THE ORACLE FOR Mac". (:) AND, AT JOME POINT,

OUTPUTS cm", t")

LET US DEFINE THE FOLLOWING PROBABILISTIC
                                   PROOF
                                        EVENT
                                                   coll = 66 Hs (m*) = Hs (m) FOR SOME m + m*
                                                                                                                                                                           me Q"
                                         WE CAN NOW DO SOME EAST PROBABILISTIC
                                                  Pr (Mac Forge A, TH (n)=1) =
                                          Pr (MacForgea, Tu(n)=1 ~ coll) +
Pr (MacForgea, Tu(n)=1 ~ coll)
                    Pr(A A B)

Pr(A A B)

WE WILL PROVE

THAT THIS IS

NOCH-IGINE BY

A REDUCTION

AND EXPLOITING

THE SECURITY OF THE

THE SECURITY OF THE
                                             WE WILL PROVE
THAT THIS IS
NEGLIGIBLE BT
A REDUCTION
AND EXPLOITING
THE OPLISION RESISTANCE
OF H
                        \widehat{\Box} IN THE FIRST REDUCTION, WE BUILD AN ADVERSART C_A FOR THE HASH FUNCTION USING A AS A SUBROUTINE. OUR OBJECTIVE IS TO PROVE THAT
                                               Pr ( Hush Coll CA, H (W) = 1) = Pr (collA)
                                     CA IS DEFINED AS POLLOWS:
                                              FIRST, IT PRODUCES A KET (S,K) BY CALLING GEN".
                                                 THEN , IT CALLS A ON 1" AND WAITS UNTIL A
                                              THEN , IT CALLS A ON 1" AND WAITS UNTIL A PRODUCES A RESULT.

WHENDER A QUERIES THE ORACLE FOR MOCH ON M, C PROCEEDS AS PLLOWS:

"IT FIRST CALLS HG ON M AND MOCK ON THE OBTAINED RESULT.

IT KEEPS TRACK OF THE MESSAGE M IN AN INTERNAL "DATABASE", CALL IT ID, ALSO KEEPING TRACK OF HG (m)

PINALLY, IT FORMARDS THE RESULT TO A

AFTER PEOFEMENT SOME QUERIES A FINALLY.
                                           AFTER PERPANING SOME SUBJECT, A FINALT PRODUCES A PAIR < m, to )

WE THROW AWAY to AND WE CONFUTE Holder of M and THER MESSAGE M+m' IS SUCH THAT Holder ANT OTHER MESSAGE ONLY WE OUTPUT (m, m') OTHERWISE WE CUTPUT
                                                NOTHING
                                       FROM THE WAY WE HAVE DESIGNED CA, IT IS
                                        EAST TO REALISE THAT
                            \Pr \Big( \text{HashColl}_{G_1 \text{H}} (N) : L \Big) = \Pr \Big( \text{colla} \Big)  
 In the Seland Reduction, we instead want to
                                         BUILD AN ADVERSART BAFOR TI USING A AS A
                                        SUBROUTINE OUR OBJECTIVE IS , OF COVESE , TO BUILD BY IN SUCH A WAY THAT
                                                Pr (Mac Forge & (n)=1) = Pr (Mac Forge, TH (n)=1 Arcolla)
                                         WE HAVE TO DESIGN BA USING AS A SUBPOUTINE, WE WILL DO IT ON FRIDAY.
```