
Cryptography

Exercise Book

Giulia Giusti

Abstract

This is meant to be a collection of simple exercises on modern cryptography and the
symbolic model. It is work in progress, and very likely will remain so in the foreseeable future.
Please report any typo or mistake to ugo.dallago@unibo.it or giulia.giusti7@unibo.it.

1 Perfectly Secure Encryption

Exercise 1.1

Find an example of a perfectly secure encryption scheme such that keys are not generated according
to the uniform distribution. First, define the encryption scheme formally, then prove its correctness
and perfect security. Would it be possible to design one such scheme in such a way that |M| = |K|?

Exercise 1.2

Consider the PlayFair classic cipher1 and formulate it as a triple of algorithms (Gen,Enc,Dec)
such that messages are strings in Σ∗ and Σ is the English Alphabet. Prove that PlayFair cannot
be perfectly secure.

Exercise 1.3

Design a perfectly secure encryption scheme different from the OTP such that M = K = C =
{0, 1}n.

Exercise 1.4

Prove that the Caesar cipher does not have perfect secrecy.

Exercise 1.5

In the so-called Vernam’s cipher, messages, keys and ciphertexts are all taken from the same
set {0, 1}n. But what if one wants to encrypt messages written in other alphabets? Given any
alphabet Σ (namely any finite set of characters), design a perfectly-secure encryption scheme ΠΣ

such that M = Σn, i.e., messages are strings of length n from Σ. In doing so, you are free to
decide how K and C are defined. Give a proof of perfect secrecy for your construction.

1see https://en.wikipedia.org/wiki/Playfair_cipher

1

2 Private Key Encryption and Pseudorandomness

Exercise 2.1

Prove that, whenever f : N→ R is a negligible function, the function g : N→ R defined as

g(n) =

n∏
i=0

f(i)

is also negligible.

Exercise 2.2

Consider the keyed, length-preserving, function F such that F (k;x) = k ∨ x where ∨ is bitwise
OR. Prove that F cannot be pseudorandom by giving an attack and analyze it.

Exercise 2.3

Consider a function CDNT such that there is a polynomial p such that for every natural number
n the result CDNT (1n) is a tuple ⟨s1, . . . , sp(n)⟩ where:
• p(n) ≥ 2;
• for every i ∈ {1, . . . , p(n)} it holds that si ∈ {0, 1}n;
• si = sj implies i = j.

Given a length-preserving function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, define FCDNT as the function
on binary strings defined as follows:

FCDNT (r) = F (r, s1) · . . . · F (r, sp(|r|))

where CDNT (1|r|) = ⟨s1, . . . , sp(|r|)⟩ and · is string concatenation. Prove that if F is a PRF and
CDNT computable in deterministic polynomial time, then FCDNT is a pseudorandom generator.

Exercise 2.4

First, we need some auxiliary definitions. A function H : {0, 1}∗ → {0, 1}∗ is said to be length-
preserving iff for every s ∈ {0, 1}∗ it holds that the length |s| of s is equal to |H(s)|. Given
two functions f : A → B and g : B → C, we write g ◦ f for the composition of f and g, i.e.
the function from A to C such that (g ◦ f)(a) = g(f(a)) for every a ∈ A. Now, let us come to
the actual exercise. Let G be any pseudorandom generator, and let H be any length-preserving
bijection. Under which conditions on H is H ◦G guaranteed to be a PRG? Conversely, if H ◦G
is pseudorandom, is G itself a PRG? Prove all your claims.

Exercise 2.5

Suppose that the experiment PrivKeav is replaced by the following variation of it, that we call
PrivKRoureav :

PrivKFoureavA,Π(n) :

k ← Gen(1n)

(m0,m1,m2,m3)← A(1n)
if |mi| ≠ |mj | for some i ̸= j :

return 0

b← {0, 1, 2, 3}
c← Enck(mb)

b∗ ← A(c)

return (b
?
= b∗)

Now:

2

1. Formulate a notion of security for an encryption scheme, adapting the one we know to the new
experiment.

2. Prove that any encryption scheme which is secure against PrivKeav is also secure against
PrivKFoureav .

3. Prove also the converse, namely that any encyrption scheme which is secure against PrivKFoureav

has to be secure against PrivKeav .

Exercise 2.6

A banking company is offered to use an encryption scheme secure against passive attacks to
encrypt data related to the transactions of its customers. The officials of this company, however,
are not so convinced that the definition based on the PrivKeav experiment is satisfactory. Convince
the company otherwise by showing that every encryption scheme which is secure against passive
attacks Π = (Gen,Enc,Dec) is such that no PPT adversary A is capable, starting from c =
Enck(m), to rebuild the value of the last ⌊|m|/10⌋ bit of the message m (where |m| is the length
of the message m).

Exercise 2.7

Suppose Π = (GenΠ,EncΠ,DecΠ) and Θ = (GenΘ,EncΘ,DecΘ) are two private-key encryp-
tion schemes. Define their juxtaposition as another private-key encryption scheme Π#Θ =
(GenΠ#Θ,EncΠ#Θ,DecΠ#Θ) such that

GenΠ#Θ(1
n) = ⟨GenΠ(1

n),GenΘ(1
n)⟩;

EncΠ#Θ(⟨kΠ, kΘ⟩, ⟨mΠ,mΘ⟩) = ⟨EncΠ(kΠ,mΠ),EncΘ(kΘ,mΘ)⟩;
DecΠ#Θ(⟨kΠ, kΘ⟩, ⟨cΠ, cΘ⟩) = ⟨DecΠ(kΠ, cΠ),DecΘ(kΘ, cΘ)⟩;

where ⟨·, ·⟩ is an operator for string concatenation. First of all, prove that Π#Θ is correct whenever
Π and Θ are correct. Then, prove that if Π#Θ is secure against passive adversaries, than both Π
and Θ are. What can we say about the reverse implication?

3 Message Authentication Codes (MAC)

Exercise 3.1

A banking company is offered to use a secure authentication scheme to send data relating to bank
transfers made to customers. The officials of this company, however, are not so convinced that
the MacForge experiment is satisfactory. In particular, officials would like to be sure that no
adversary, after seeing n bank transfers b1, ..., bn (where n is the safety parameter) and the related
tags t1, ..., tn pass through the channel, can build a valid tag of a new transfer b different from
each one of the bi. Prove that every secure MAC is such that such an attack, if PPT, cannot
have a more than negligible probability of success. Assume that, by the Kerchoff principle, the
adversary has access to a way, given an amount a, to generate in polynomial time in the length of
a, a transfer of an amount equal to a.

Exercise 3.2

Given a pseudorandom function F , consider the MAC Π2
F = (Gen,Mac,Vrfy) where:

• Gen returns a binary string of length n+ 1 whenever invoked in 1n.
• Mack is only defined on messages of length 2|k| − 2 and returns on input m the string
Fk(k1||m0)||Fk((¬k1)||m1), where m = m0||m1, it holds that |m0| = |m1| = |k| − 1, k1 is
the first bit of k, and || is the concatenation operator.

• Vrfy is defined in a natural way.
Please discuss about the security of Π2

F under the hypothesis that F is indeed pseudorandom.

3

Exercise 3.3

Many of the MACs we have studied are such that the Vrfy function simply proceeds by checking
whether the input tag is identical to the one produced by Mac. We call such MACs canonical.
Still talking about MACs, an apparently stronger definition of security than the one we have given
consists in allowing the adversary to not only have access to an oracle for Mack, but also to an
oracle for Vrfyk. Prove that for every canonical MAC the aforementioned security definition is
equivalent to the one we saw during the course.

4 Assumptions from Number Theory and Algebra

Exercise 4.1

Consider the three assumptions: CDH, DDH, and discrete logarithm. We said, without proving
it, that there are logical implications between them. Choose two of the three assumptions and
formally prove the implication between them by means of a proof by reduction.

Exercise 4.2

Study the DDH, CDH and discrete logarithm assumptions when the underlying algorithm GenCG
on input 1n produces in output a triple (Zn, n, g) where the operation underlying Zn is taken to be
addition modulo n. Is there any constraint on g? Is there any hope that the three aforementioned
assumptions indeed hold?

4

Answers to Selected Exercises

Answer to Exercise 1.1

Consider the following variation of the Vernam’s cipher. Let Π = (Gen,Enc,Dec), where:
• The message spaceM and the ciphertext space C are {0, 1} whereas the key space K is given
by {0, 1}2.

• The algorithm Gen chooses a string k = k1k2 from K, sampling k1 according to uniform
distribution, while k2 is sampled not uniformly (e.g. by always outputting 1).

• The encryption algorithm Enc works as follows: given a key k1k2 ∈ {0, 1}2 and a message
m ∈ {0, 1}, Enc outputs c := k1 ⊕m

• The decryption algorithm Dec works as follows: given a key k = k1k2 ∈ {0, 1}2 and a ciphertext
c ∈ {0, 1}, output m := k1 ⊕ c.

Π is correct. Indeed, we have that Deck (Enck(m)) = (k1 ⊕ (k1 ⊕m)) = m. Π is also perfectly
secure. As for the Vernam’s cipher, we can prove that Pr(C = c | M = m) does not depend on
m:

Pr(C = c |M = m) = Pr(M ⊕K1 = c |M = m) = Pr(m⊕K1 = c)

= Pr(m⊕ (m⊕K1) = m⊕ c) = Pr(K1 = m⊕ c) =
1

2

We cannot define a perfectly secure scheme such that keys are not generated according to the
uniform distribution and such that it also holds that |M| = |K|. We can indeed verify that for
every perfectly secure scheme such that |M| = |K|, all keys are chosen with the same probability.
First of all, if the encryption scheme is secure and |M| = |K|, then for every c ∈ C there is a
bijection σc : K →M such that σc(k) = Deck(c). Indeed, if

DecK(c) := {m ∈M | ∃k ∈ K. Deck(c) = m}

Then DecK(c) = M. Indeed, if there were m ∈ M is such that m ̸∈ DecK(c), then, for any
m′ = Deck(c) with Pr(K = k) > 0, it should be Pr(C = c | M = m) ̸= Pr(C = c | M = m′),
contradicting perfect security. Then, by defintion of σc, we have that σc(K) = M. So, σc is a
surjective function between two (finite) sets having same cardinality, i.e. it is a bijection. As a
consequence, for every k it holds that

Pr(K = k) = Pr(C = c |M = σc(k))

since, if other keys send σc(k) to c, then we would not have a bijection. And for every k, h ∈ K,
by perfect secrecy,

Pr(K = k) = Pr(C = c |M = σc(k)) = Pr(C = c |M = σc(h)) = Pr(K = h)

i.e. all keys are chosen with the same probability.

Answer to Exercise 1.2

PlayFair can be formalized as an encryption scheme composed of three spaces (K,M, C) and a
triple (Gen,Enc,Dec) where:

Gen : 1→ K Enc :M x K → C Dec : C x K →M

Let us consider Σ as the English alphabet and ∆ as the English alphabet - {J} because we use
the convention in which the letter J is not used in the key table.
The three spaces are defined as follows:

• K ∈ 5x5 table containing the elements of ∆, the filling of this table depends on the generation
of a pair < keyword, convention filling > where keyword ∈ ∆∗ and convention filling ∈
set of all possible strategies for placing the non-duplicated letters of keyword in order in a
5x5 table.

5

• M∈ Σ∗

• C ∈ ∆∗

The three algorithms for PlayFair are defined as follows:

• Gen is an algorithm that outputs a key k in the form of a 5x5 table generated as follows:

Gen(1) :

keyword← random generation of a string with alphabet Σ

convention filling ← random choice of a convention

k ← generate table(convention filling, keyword)

return k

• Enc is an algorithm that takes as input a message m =< m1, ...,mn > where the mi are
the characters of the plaintext message and a key k and returns as output a ciphertext c
calculated in the following way:

Enc(m, k) :

for n=1 to |m| do

(l1, l2) =

{
[m2n−1, X] if 2n > |m| ∨ m2n−1 = m2n

[m2n−1,m2n] otherwise

[i1, j1]← position of l1 in k

[i2, j2]← position of l2 in k

(c2n−1, c2n) =

(k[(i1 + 1) mod 5, j1], k[(i2 + 1) mod 5, j2]) if j1 = j2

(k[i1, (j1 + 1) mod 5], k[i2, (j2 + 1) mod 5]) if i1 = i2

(k[i1, j2], k[i2, j1]) otherwise

return c

Note that using mod 5 for each operation is necessary to respect the cyclicality of the rows
and columns of the table.

• Dec is an algorithm that takes as input a ciphertext c =< c1, ..., cn > where the ci are the
characters of the ciphertext and a key k and returns as output a clear message m calculated
in the following way:

Dec(c, k) :

for n=1 to |c| do
(l1, l2) = [c2n−1, c2n]

[i1, j1]← position of l1 in k

[i2, j2]← position of l2 in k

(m2n−1,m2n) =

(k[(i1 − 1) mod 5, j1], k[(i2 − 1) mod 5, j2]) if j1 = j2

(k[i1, (j1 − 1) mod 5], k[i2, (j2 − 1) mod 5]) if i1 = i2

(k[i1, j2], k[i2, j1]) otherwise

return m

Now we want to prove that PlayFair cannot be perfectly secure. By contradiction, we assume
that PlayFair is perfectly secure. By Shannon Theorem we know that if an encryption scheme is
perfectly secure onM,K, C then |K| ≥ |M|.
In PlayFair we have that:

6

• K contains all possible ways to create a 5x5 table by filling it with 25 letters of the English
alphabet ∆, so |K| = 25!.

• M contains all possible strings of the English alphabet Σ with arbitrary length, , so |M| =
26n where n is the message length which is not fixed a priori.

Consequently we obtain that |K| < |M| and we can conclude that PlayFair cannot be perfectly
secure.

Answer to Exercise 2.1

Let f : N → R a negligible function and g(n) =
∏n

i=0 f(i). Since f is negligible, there is N such
that for every n ≥ N , f(n) ≤ 1 (just consider the constant polynomial constone(n) = 1). There is
also M > N such that for every n > M , f(n) ≤ 1∏N

i=0 f(i)
. Consider now any polynomial p. Then

there is Np such that for every n ≥ Np, f(n) ≤ 1
p(n) . Now, for every n ≥ max{M + 2, Np} we

have that

g(n) =

n∏
i=0

f(i) = f(n) ·
n−1∏
i=0

f(i) ≤ f(n) ·
M+1∏
i=0

f(i)

= f(n) ·

(
M∏
i=0

f(i)

)
· f(M + 1)

≤ 1

p(n)
·

(
M∏
i=0

f(i)

)
· 1∏N

i=0 f(i)

≤ 1

p(n)
·

(
N∏
i=0

f(i)

)
· 1∏N

i=0 f(i)
=

1

p(n)

In conclusion, g is negligible.

Answer to Exercise 2.2

Let us recall the definition of a pseudorandom function

Definition 1 Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed function.
F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a
negligible function ε such that:

|Pr(DFk(·)(1n) = 1)− Pr(Df(·)(1n) = 1)| ≤ ε(n) (1)

where k is chosen randomly from the set of all strings of length n and f(·) is a random function
from {0, 1}n to {0, 1}n.

Let n = |k|. In order to prove that the function F described in the exercise is not a pseudorandom
function, we define a distinguisher D′ such that |Pr(D′Fk(·)(1n) = 1)− Pr(D′f(·)(1n) = 1)| is not
negligible. The distinguisher D′ is defined as follows

Distirnguisher D′:

D′ is given input 1nand access to an oracle O : {0, 1}n → {0, 1}n.
1) Run O(1n), obtaining the string z.

2) Return 1 if z = 1n, and 0 otherwise.

First, we observe that if the oracle O of D′ is a random function f then we have that

Pr(D′f(·)(1n) = 1) =
1

2n

7

Second, we observe that if the oracle O of D′ is the function F described in the exercise then, for
all k, we have that

Pr(D′Fk(·)(1n) = 1) = 1

because k ∨ 1n is always equal to 1n.
We can conclude that F is not a pseudorandom function because

|Pr(D′Fk(·)(1n) = 1)− Pr(D′f(·)(1n) = 1)| = 1− 1

2n

and 1− 1
2n is not negligible.

Answer to Exercise 2.5

We will consider the two following experiments:

PrivKeav
A,Π(n):

(m0,m1)← A(1n);
if |m0| ≠ |m1| then

Result: 0
k ← Gen(1n); b← {0, 1};
c← Enck(mb);
b∗ ← A(c);

Result: b∗
?
= b

PrivKFoureavA,Π(n):

(m0,m1,m2,m3)← A(1n);
if |m0| ≠ |m1| then

Result: 0
k ← Gen(1n); q ← {0, 1, 2, 3};
c← Enck(mq);
q∗ ← A(c);

Result: q∗
?
= q

1. We already know the notion of perfect security with respect to PrivKeav . We give now the
notion of perfect security with respect to PrivKFoureav .
Definition 2 An encryption scheme Π is said to be secure with respect to PrivKFoureav iff for
every PPT adversary A there exists a negligible function ε such that:

Pr(PrivKFoureavA,Π(n) = 1) ≤ 1

4
+ ε(n)

So, an encryption scheme is secure iff the success probability of any PPT adversary is at most
negligibly greater than 1

4 . Indeed, it is easy to succeed with probability 1
4 by just outputting

the outcome of two coin flips. The challenge is to do better than this.
2. We prove now that any encryption scheme which is secure against PrivKeav is also secure

against PrivKFoureav . We prove this by reduction, i.e we consider an adversary A which wins
over PrivKFoureav , and upon A we construct an adversary A′ that wins over PrivKeav . The
adversary A′ can be built from A as follows:

8

Let us be a little more specific about how the final output of A′ is produced. At the end of
the experiment, A will output an element q∗ ∈ {0, 1, 2, 3}. Then, the output of A′ will be the
bit in position b+ in the binary representation of q∗, call it b∗. For example, suppose that A
outputs q∗ = 2, whose binary representation is 10, and that b+ = 1. Then, b∗ = 1, because the
bit in position 1 in the string 10 is 1. Now, how can we relate the two probabilities of success,
namely

Pr(PrivKFoureavA,Π(n) = 1) Pr(PrivKeav
A′,Π(n) = 1)

We know that

Pr(PrivKFoureavA,Π(n) = 1) =
1

4
+ ε(n)

where ε is not negligible. We also have that

Pr(PrivKeav
A′,Π(n) = 1) = Pr(PrivKeav

A′,Π(n) = 1) | b+ = 0) · Pr(b+ = 0)

+ Pr(PrivKeav
A′,Π(n) = 1) | b+ = 1) · Pr(b+ = 1)

=
1

2
· Pr(PrivKeav

A′,Π(n) = 1 | b+ = 0)

+
1

2
· Pr(PrivKeav

A′,Π(n) = 1 | b+ = 1)

We can play exactly the same trick, but now with the value of b, namely the random bit drawn
by the PrivKeav experiment, and conclude that

Pr(PrivKeav
A′,Π(n) = 1) =

1

4
·

11∑
t=00

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = t)

Now consider q ∈ {0, 1, 2, 3} as in PrivKFoureav experiment’s description and sq its binary
encoding. We have then

1

4
+ ε(n) = Pr(PrivKFoureavA,Π(n) = 1)

=
1

4
· (Pr(PrivKFoureavA,Π(n) = 1 | sq = 00)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 01)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 10)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 11))

So,
11∑

t=00

Pr(PrivKFoureavA,Π(n) = 1 | sq = t) = 1 + ε∗(n) (2)

where ε∗(n) is not negligible. We now have to consider terms in the form

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = t)

for t ∈ {00, 01, 10, 11}, and relate them to the terms in the sum (2). Let us for example consider
the case t = 00. For A′ to be able to win in this situation, it must be that the bit in position 0
(namely the value of b+) of the output of A is 0 (namely the value of b). This happens precisely
when A′ wins, given that sq = 00 or sq = 10. In other words

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = 00) = Pr(PrivKFoureavA,Π(n) = 1 | sq = 00)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 10)

9

With a very similar kind of reasoning, we can reach

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = 01) = Pr(PrivKFoureavA,Π(n) = 1 | sq = 00)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 01)

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = 10) = Pr(PrivKFoureavA,Π(n) = 1 | sq = 01)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 11)

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = 11) = Pr(PrivKFoureavA,Π(n) = 1 | sq = 11)

+ Pr(PrivKFoureavA,Π(n) = 1 | sq = 10)

As a consequence:

Pr(PrivKeav
A′,Π(n) = 1) =

1

4
·

11∑
t=00

Pr(PrivKeav
A′,Π(n) = 1 | bb+ = t)

=
1

4
·

(
2 ·

11∑
t=00

Pr(PrivKFoureavA,Π(n) = 1 | sq = t)

)

=
1

4
(2 + 2ε∗(n)) =

1

2
+

ε∗(n)

2

which is negligible.
3. We prove now that any encryption scheme which is secure against PrivKFoureav is also secure

against PrivKeav . Again, we prove this by reduction, i.e we consider an adversary A which wins
over PrivKeav , and upon A we construct an adversary A′ that wins over PrivKFoureav. For
every adversary for PrivKeav , we can build an aversary for PrivKFoureav as follows:

Now, consider q as in PrivKFoureav experiment’s description and b+ the random bit that de-
termines which of the two bits produced by the two copies of A will be outputted by A′ (see
the figure above). First, let us observe that

Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {2, 3} ∧ b+ = 1) = Pr(PrivKeav
A,Π(n) = 1)

Indeed, if q ∈ {2, 3} and b+ = 1 then the outcome of PrivKFoureavA′,Π(n) directly depends on
PrivKeav

A,Π(n). On the other hand, we cannot say much about, e.g.

Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {2, 3} ∧ b+ = 0)

10

Finally, we have that

Pr(PrivKeav
A,Π(n) = 1) =

1

2
+ ε∗(n)

where ε∗ is not negligible. Then we have that:

Pr(PrivKFoureavA′,Π(n) = 1)

= Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {0, 1}) · Pr(q ∈ {0, 1})
+ Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {2, 3}) · Pr(q ∈ {2, 3})

=
1

2
· [Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {0, 1} ∧ b+ = 0) · Pr(b+ = 0)

+ Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {0, 1} ∧ b+ = 1) · Pr(b+ = 1)]

+
1

2
· [Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {2, 3} ∧ b+ = 0) · Pr(b+ = 0)

+ Pr(PrivKFoureavA′,Π(n) = 1 | q ∈ {2, 3} ∧ b+ = 1) · Pr(b+ = 1)]

≥ 1

2
·
[
1

2
· Pr(PrivKeav

A,Π(n) = 1) + 0

]
+

[
0 +

1

2
· Pr(PrivKeav

A,Π(n) = 1)

]
≥ 1

2
·
(
1

4
+

ε∗(n)

2

)
+

1

2
·
(
1

4
+

ε∗(n)

2

)
=

1

4
+

ε∗(n)

4

which is the thesis.

Answer to Exercise 3.1

Given a secure authentication scheme Π, we want to show that an adversary like the one described
in the exercise cannot have more than negligible chance of success. The adversary A described in
the exercise has access to:

• n pairs of in the form (bi, ti), where bi are meaningful messages (bank transfers) and ti are
valid tags for the aforementioned messages.

• An algorithm able to generate, starting from a value a, a valid bank transfer of amount a
in polynomial time. Note that thanks to this we know that the adversary described by the
exercise is PPT, this is crucial.

Let us proceed by reduction, defining an adversary B for MacForge that uses the adversary A
described in the exercise. More precisely, the adversary B is defined as follows

Adversary B:

B is given input 1nand access to an oracle O.
1) Randomly generate n bank transfers, denoted by b1, ..., bn.

2) Query n times the oracle O to get the valid tags (denoted by t1, ..., tn) related to

the bank transfers generated in the previous step.

3) Run A(1n, (b1, t1), ..., (bn, tn)) which returns a pair (b, t) containing a bank

transfer b /∈ {b1, ..., bn} and the related tag t.

3) Return (b, t) as output.

The behavior of adversary B can be summarized graphically as follows

11

Adversary B
for MacForge

1n

A

Oracle

Random generation of
bank transfers

1n

b1,...,bn

t1,...,tn

(b1,t1),...,(bn,tn)

(m,t)
(b,t)

By this reduction we have that

Pr(MacForgeB,Π(n) = 1) = Pr(A(n, (b1, t1), ..., (bn, tn)) = (b, t))

By hypothesis we know Π is a secure authentication scheme, consequently, by definition, the first
term is negligible and we can conclude that the second term is negligible, which is the thesis.

Answer to Exercise 3.2

The MAC Π2
F , defined in the exercise, is not a secure authentication scheme because it is possible

to define an adversary A in the sense of the MacForge experiment which has a non-negligible
probability of success. The adversary A can be built as follows:

Adversary A:

A is given input 1nand access to an oracle O = Mack(·).
1) Query the oracle O on input 02n, obtaining the string

y = y1||y2 = Fk(k1||0n)||Fk((¬k1)||0n)
2) Query the oracle O on input 12n, obtaining the string

z = z1||z2 = Fk(k1||1n)||Fk((¬k1)||1n)
3) Return (m, t) = (0n||1n, y1||z2) as output.

We can observe that
Pr(MacForgeA,Π2

F
(n) = 1) = 1

because the message m = 0n||1n has not been used by A for any oracle queries (m /∈ {02n, 12n})
and Vrfy(k,m, t) = Vrfy(k, 0n||1n, y1||z2) = 1, so we can conclude that Π2

F is not a secure authen-
tication scheme.

Answer to Exercise 4.1

Consider the following implication: if the CDH assumption holds with respect to GenCG then the
discrete logarithm assumption also holds with respect to GenCG. We will consider the following
two experiments related to the CDH assumption and the discrete logarithm assumption:

12

CDHA,GenCG(n):
(G, q, g)← GenCG(1n);
h← G;
j ← G;
r ← A(G, q, g, h, j);

Result: DHg(h, j)
?
= r

DLogA,GenCG(n):

(G, q, g)← GenCG(1n);
h← G;
x← A(G, q, g, h);

Result: gx
?
= h

We prove this by reduction, i.e we build an adversary B in the sense of CDHB,GenCG starting from
an adversary A in the sense of DLogA,GenCG. The adversary B can be built from A as follows:

Adversary B:

B is given input 1nand access to a routine GenCG.

1) Run GenCG(1n), obtaining(G, q, g).

2) Generate two random elements of the group G, denoted by h and j.

3) Run A(G, q, g, h) which returns the discrete logarithm of h, denoted by lh.

4) Run A(G, q, g, j) which returns the discrete logarithm of j, denoted by lj .

5) Compute r as glh· lj .

6) Return r as output.

The behavior of adversary B can be summarized graphically as follows

Adversary B
for CDH

1n

Adversary A
for DLog

GenCG

1n

1n

(G,q,g)

Generate random
elements of a groupG

(h,j)

(G,q,g,h)

(G,q,g,j)

(G,q,g)

g x*y

y=lj

x=lh

r

By this reduction we have that

Pr(CDHB,GenCG(n) = 1) = Pr(DLogA,GenCG(n) = 1)

and from this equality we can observe that if adversary B wins against the experiment CDH
then adversary A also wins against the experiment DLog. We can conclude that every efficient
algorithm for the discrete logarithm induces an efficient algorithm for CDH. In other words, this
means that the CDH assumption implies the discrete logarithm assumption, which is the thesis.

13

