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1. Introduction
In a specific scenario (referred to as symmetrical one) in which two people want to communicate
secretly, they share both an algorithm and a secret key (the latter is not shared with anyone
else). These protocols are specifically designed to ensure confidentiality during data exchange
between two parties.

The encryption scheme consists of three spaces (𝒦, ℳ, 𝒞) and a triple of algorithms:

• Generation: while not a true mathematical function, it can be represented as 𝖦𝖾𝗇 : 1 ↦ 𝒦,
where it generates a key. It’s often referred to as random-function of random-algorithm.

• Encryption: it’s a deterministic algorithm 𝖤𝗇𝖼 : ℳ × 𝒦 ↦ 𝒞.

• Decryption: similarly, it’s represented as 𝖣𝖾𝖼 : 𝒞 × 𝒦 ↦ ℳ.

The scheme is correct if 𝖣𝖾𝖼(𝖤𝗇𝖼(𝑥, 𝑘), 𝑘) = 𝑥 but, correctness does not assure security (for
instance, the identity function is correct but not secure).

Kerckoff’s principle

The only secret part of the communication is the key. Both participants in the communication
are fully aware of the entire schema.

1.1. Possible attacks
• Ciphertext-Only

The attacker knows a certain number of ciphertexts 𝑐1, …, 𝑐𝑛 so it stays in a passive way and
interferes with the communication reading the sent ciphertext.

• Known-Plaintext

Another passive attack where the attacker knows a certain number of pairs (𝑚1, 𝑐1), …, (𝑚𝑛, 𝑐𝑛).
So, the attacker can understand the original 𝑚𝑖 by the intercepted 𝑐𝑖.

• Chosen-Plaintext

In this case the attacker plays an active role computing 𝖤𝗇𝖼𝑘(𝑚) = 𝖤𝗇𝖼(𝑚, 𝑘) for a message of
their choice. Those who know 𝑘, know everything.

• Chosen-Ciphertext

The attacker has access to an oracle for the decryption 𝖣𝖾𝖼𝑘(·) without having access to the
key 𝑘.

1.2. Some historical ciphers
• Caesar

It is a good example of what we do not want to do. This is one of the best ones and more
famous as example of symmetrical cipher. We just need a message ℳ and a single key in a set
𝒦, e.g. 𝒦 = {4}.

Since the 𝖤𝗇𝖼 algorithm takes the key and shifts the message of 𝑘 characters, the only thing an
attacker might do is, given a ciphertext, shifting the message of −𝑘 characters (i.e. backwards).

The alphabet used here is composed by the letters of the english alphabet.

• Shift
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It’s a generalisation of the cipher above: the alphabet can be made by different characters. The
number of positions you shift is part of the key.

For instance, given a message S | I | O | R | D the ciphertext will be S+n | I+n | O+n | R+n |
D+n of course the shifter goes back for characters > |alphabet|. The 𝒦 becomes {1, …, |Σ| − 1}.

An attacker can try to decrypt a ciphertext with all the possible keys with at most |Σ| −
1 attempts.

For different data types (such as images) is not useful.

• Mono-alphabetic substitution

Another generalisation but for both ciphers above.

𝒦 becomes {𝜎 | 𝜎 : Σ ↦ Σ  is a permutation}.

So, there is a function which maps the character to another. Indeed, the previous message
example of S | I | O | R | D has a ciphertext made by 𝜎(𝑆) | 𝜎(𝐼) | 𝜎(𝑂) | 𝜎(𝑅) | 𝜎(𝐷).

You need to use an injective function.

A brute-force attack is impossible here, because |𝒦| is |Σ|!.

• Vigenère

We do not apply the same transformation for each character. Each char uses different keys.

The previous example S | I | O | R | D has a ciphertext made by 𝑆 + 𝐵1 | 𝐼 + 𝐵2 | 𝑂 + 𝐵3
| 𝑅 + 𝐵4 | 𝐷 + 𝐵5.

• Take-home messages

It’s considered not secure but one of the most famous in history. We have a large enough key
to prevent brute-force attack (this is necessary, not sufficient). But, the length of a key does
not assure a prevention at all.

1.3. Statistical attacks
Ciphertexts shown until now are not secure. The idea of this attack is to analyse the frequencies
of the symbols in the ciphertext comparing the numbers with the numbers you know about
the message. This makes sense if you’re considering a natural language message where you
know about the frequencies of a character and words in that natural language: knowing these
frequencies you can easy understand the mapping of a letter. (eg: you know that the is the
most frequent word in an english sentence).

In other words, given the frequencies 𝑞1, …, 𝑞|Σ| for each symbol in the ciphertext 𝑐 you can
build tables through the probabilities 𝑝𝑖 where 𝑖-th is the sentence of that language. As |𝑐|
increases, the probability of success converges to 1.

This statistical attack for Shift cipher can be computed as

𝐾 = ∑|Σ|
𝑖=1 𝑝2

𝑖

𝐼𝑗 = ∑|Σ|
𝑖=1(𝑝𝑖 · 𝑞𝑖+𝑗)

If we encrypt data for images does not mean it’ll also be valid for a text.

There is another kind of the same attack but for the Vigenère cipher called Kasiski’s method.
The observation here is to understand the period of the key (or better, the number of the
characters of the key). Of course, you start knowing that a natural language has a fixed structure
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on words for bigrams and trigrams. A word in the plaintext could be encrypted with the same
key in another point on the plaintext.

Figure 1: Vigenère statical attack

In Figure 1 you can see that THE is encrypted twice to LLI using the same key SBE. If you know
this you can find out the length of the key and then (ya, working a lot more ofc) whole the key.
The same trigrams are encrypted the same.

This kind of attack is computational simple because you just count.

There’s also a method based on the index of coincidence to find out the length of the key. For
increasing values of 𝜏  natural language we tabulate the characters of the ciphertext in position
1, 1 + 𝜏, 1 + 2𝜏, 1 + 3𝜏, … obtaining the frequencies 𝑞𝜏

𝑖 .

𝐾 = ∑|Σ|
𝑖=1 𝑝2

𝑖

𝑆𝜏 = ∑|Σ|
𝑖=1 (𝑞𝜏

𝑖 )2

1.4. The 3 principles of modern cryptography
1. Use of rigorous and precise definitions of security of primitives and protocols

We need formal mathematical definitions.

2. Accuracy in specifying the underlying assumptions

We can’t prove without assumptions.

3. Proof of security written in the language of math

We use the math (such as combinatory, statistics, …) to prove the security of an algorithm. This
secures us to prove any possible to do something against the algorithm (thank you math <3)
and not only once for a given example.

We need to formulate exact definitions during the design (you need to know what the goal
is), the use (you should already know the limitations of an encryption scheme), the study and
the compare (we can use an encryption scheme depending on its security issues comparing to
another one).

We can’t use inaccurate assumptions, even if they’re not proved. Example of assumptions used
by everyone are NP problems: no one really knows how to say if a problem is NP or not, but
it’s ok.
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2. Perfectly-secret encryption
In a context of perfect-secrecy the 𝖤𝗇𝖼 algorithm is possibly probabilist but 𝖣𝖾𝖼 is deterministic
for sure. We want correctness, and this is much more important than everything else.

The probabilistic process is a base for the random variables. We need 3 random variables:

• 𝐾 that corresponds to the used key depending on 𝖦𝖾𝗇 algorithm;

• 𝑀  that corresponds to the message produced by the sender;

• 𝐶 that corresponds to the ciphertext, dependant on 𝐾, 𝑀  and 𝖤𝗇𝖼.

Then, we can calculate Pr(𝑲 = 𝑘) with 𝑘 ∈ 𝒦 is a key but we also can calculate Pr(𝑲 =
𝑘 | 𝑴 = 𝑚) with 𝑚 ∈ ℳ. The latter is a condition: you can evaluate the key if you know
a message.

Key and message are always independent: two separate random processes.

𝐶 depends on 𝑀 .

Definition (Perfect Secrecy) An encryption scheme (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) is perfectly secret if
for every message 𝑚 ∈ ℳ and every ciphertext 𝑐 ∈ 𝒞 for which Pr(𝑪 = 𝑐) > 0 we have that
Pr(𝑴 = 𝑚 | 𝑪 = 𝑐) = Pr(𝑴 = 𝑚).

We also should define some lemma:

Lemma (1) An encryption scheme (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) is perfectly secret ⟺ for every message
𝑚 ∈ ℳ and for every ciphertext 𝑐 ∈ 𝒞 we have that Pr(𝑪 = 𝑐 | 𝑴 = 𝑚) = Pr(𝑪 = 𝑐).

So, basing on conditional probability, you can get the one from the other.

Lemma (2) An encryption scheme (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) is perfectly secret ⟺ for every messages
𝑚0, 𝑚1 ∈ ℳ and for every 𝑐 ∈ 𝒞 we have that Pr(𝑪 = 𝑐 | 𝑴 = 𝑚0) = Pr(𝑪 = 𝑐 | 𝑴 = 𝑚1)

So, all the messages are equivalent.

2.0.1. Vernam’s cipher (aka One-Time Pad)
It is a storical example of a perfectly-secret cipher.

𝒦 = ℳ = 𝒞 = {0, 1}𝑛

Pr(𝑲 = 𝑘) = 1
2𝑛

𝖤𝗇𝖼(𝑚, 𝑘) = 𝑚 ⊕ 𝑘

𝖣𝖾𝖼(𝑐, 𝑘) = 𝑐 ⊕ 𝑘

This cipher is correct because:

𝖣𝖾𝖼(𝖤𝗇𝖼(𝑚, 𝑘), 𝑘) = (𝑚 ⊕ 𝑘) ⊕ 𝑘 = 𝑚 ⊕ (𝑘 ⊕ 𝑘) = 𝑚 ⊕ 0𝑛 = 𝑚

but there’s a limitation on the lengths: messages and keys must have the same length to perform
a xor operation. This limitation is a must to have for a perfectly secret encryption scheme. I
want to open a bit note about the xor operation which is reversible (and that’s because we see
it all around this Cryptography class).

Theorem Given a (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) perfectly secret encryption scheme over a message space
ℳ and a key space 𝒦. Then |𝒦| ≥ |ℳ|.
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Example

We have an example for a private key with an eavesdropper, an adversary 𝐴 and a scheme
Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼).

PrivK𝑒𝑎𝑣
𝐴,Π :

1 (𝑚0, 𝑚1) ← 𝐴
2 𝑘 ← 𝖦𝖾𝗇
3 𝑏 ← {0, 1}
4 𝑐 ← 𝖤𝗇𝖼(𝑘, 𝑚𝑏)
5 𝑏⋆ ← 𝐴(𝑐)
6 return ¬(𝑏 ⊕ 𝑏⋆)

The adversary does not guess 𝑚0 or 𝑚1 but 𝑏: he can guess 𝑐 if 𝑏 = 𝑏⋆ and that depends on the
value 0 or 1 so it is a probability thing.

Pr(PrivK𝑒𝑎𝑣
𝐴,Π = 1)

This adversary always has a minimal probability of success, so it is useless to require to have
that probability = 0.

But, it makes sense to have the probability = 1
2? In this case we say to have a indistinguishable

encryptions.

Theorem Π is perfectly secret ⟺ Π has indistinguishable encryptions.

2.0.2. Examples
• All of the already seen classic ciphers are not perfectly secure. They have |𝒦| < |ℳ|. For

instance, in Ceaser we have |𝒦| = 1 and, in shift, we have |𝒦| = |Σ| and |ℳ| = |Σ|𝑛. We
could define an aversary 𝐴 such that Pr(PrivK𝑒𝑎𝑣

𝐴,Π) > 1
2  where Π is any classic of them.

For instance, in the monoalphabetic substitution cipher someone can define an attack in two
phases:
1. It produces 𝑚0, 𝑚1 such that |𝑚0| = |𝑚1| = 2 and 𝑚0 = aa and 𝑚1 = ab where 𝑎 ≠ 𝑏.
2. 𝐴 looks at 𝑐 and checks whether 𝑐 = 𝑎′𝑎′ or 𝑐 = 𝑎′𝑏′ where 𝑎′ ≠ 𝑏′. In the first case it returns

0, otherwise returns 1.

• Given a Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) where 𝒦 = ℳ = 𝒞 = {0, 1}𝑛, 𝖦𝖾𝗇 is the same as in the OTP
but 𝖤𝗇𝖼(𝑚, 𝑘) = 𝑚 ⊕ 𝑘 with a new operation that is the opposite of xor.

0 ⊕ 0 = 1

1 ⊕ 1 = 1

0 ⊕ 1 = 0

1 ⊕ 0 = 0
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We can prove that Π is perfectly secure. The security for the former assures the security for
the latter, and we know this uses the security of the OTP (which we know it is secure). So, we
use a proof by reduction:

From any 𝐴 succeeding in breaking Π, we get 𝐵 succeeding in breaking OTP.

We go backward: starting from the scheme we want to prove secure and go back to a scheme
we know it is secure. We reach this negating the thesis and proceeding by contradiction. This
strategy is pretty much always used.

How can we define 𝐵 from 𝐴? We can imagine 𝐴 as a subroutine of 𝐵. 𝐴 produces 𝑚0, 𝑚1
taking in input 𝑐′ producing in output 𝑏⋆. 𝑚0, 𝑚1 are forwarded to the environment but the
ciphertext 𝑐 from the environment is different.

Figure 2: Proof by reduction from A to B

So

Pr(Privk𝑒𝑎𝑣
𝐵, OTP = 1) = Pr(Privk𝑒𝑎𝑣

𝐴,Π = 1)

• A generalisation of OTP which stretchs a small key to another bigger from an algorithm is
the most natural way. An example could be a duplication of each bit: this creates a 2𝑛 key
from a key of length 𝑛.

OTP+ = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) where

• 𝖦𝖾𝗇 is as in OTP.

• 𝖤𝗇𝖼(𝑚, 𝑘) = 𝑚 ⊕ double(𝑘) where double(𝑑1…𝑑𝑛) = 𝑑1𝑑1𝑑2𝑑2…𝑑𝑛𝑑𝑛 but this is insecure
because |𝒦| = |{0, 1}𝑛| = 2𝑛, |ℳ| = {0, 1}2𝑛 = 22𝑛 so |𝒦| ≪ |ℳ|.

An example of attack for the thing wrote above is, given

𝑚0 = 00 and 𝑚1 = 10 ⟶ for the first phase.

𝑐 = 𝑎𝑏 returns 0 if 𝑑 = 𝑏, else 1 ⟶ for the second phase.

In opposite of its natural way, this “doubl-ication” is dangerous.

Lemma An encryption scheme is perfectly secure ⟺ for every distribution on ℳ and for
𝑚0, 𝑚1 ∈ ℳ, it holds that Pr(𝑪 = 𝑐 | 𝑴 = 𝑚0) = Pr(𝑪 = 𝑐 | 𝑴 = 𝑚1) ∀𝑐 ∈ 𝒞.

Proof

(⟹)

Pr(𝑪 = 𝑐 | 𝑴 = 𝑚0) = Pr(𝑪 = 𝑐) because it is the definition of perfect security.

But also Pr(𝑪 = 𝑐 | 𝑴 = 𝑚0) = Pr(𝑪 = 𝑐 | 𝑴 = 𝑚1)

(⟸)
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By hypothesis we know that Pr(𝑪 = 𝑐 | 𝑴 = 𝑚1) has the same value for every possible message
𝑚𝑖.

Pr(𝑪 = 𝑐) = ∑
𝑚𝑖∈ℳ

Pr(𝑪 = 𝑐 ∧ 𝑴 = 𝑚𝑖)

It is a disjoint because a message can’t be two different messages. But also

Pr(𝑪 = 𝑐) = ∑
𝑚𝑖∈ℳ

Pr(𝑪 = 𝑐 | 𝑴 = 𝑚𝑖) · Pr(𝑴 = 𝑚𝑖)

This comes from the property of Pr(𝐴 ∩ 𝐵) = Pr(𝐴|𝐵) · Pr(𝐵).

Rewriting the formula above using a variable 𝑝 = Pr(𝑪 = 𝑐 | 𝑴 = 𝑚𝑖) we can write

Pr(𝑪 = 𝑐) = ∑
𝑚𝑖∈ℳ

𝑝 · Pr(𝑴 = 𝑚𝑖)

= 𝑝 · ∑
𝑚𝑖∈ℳ

Pr(𝑴 = 𝑚𝑖)

= 𝑝
= Pr(𝑪 = 𝑐 | 𝑴 = 𝑚𝑖)

this since ∑𝑚𝑖∈ℳ Pr(𝑴 = 𝑚𝑖) = 1.

■

Theorem The OTP is perfectly secure.

Proof

ℳ = 𝒦 = 𝒞 = {0, 1}𝑛

𝖤𝗇𝖼(𝑚, 𝑘) = 𝑚 ⊕ 𝑘

𝖣𝖾𝖼(𝑐, 𝑘) = 𝑐 ⊕ 𝑘

Let us fix an arbitrary distribution on ℳ, a message 𝑚 ∈ ℳ and a ciphertext 𝑐 ∈ 𝒞. We want
to prove that Pr(𝑪 = 𝑐 | 𝑴 = 𝑚) is somehow independent on 𝑚.
Pr(𝑪 = 𝑐 | 𝑴 = 𝑚) = Pr(𝑴 ⊕ 𝑲 = 𝑐 | 𝑴 = 𝑚)

= Pr( 𝑚 ⊕ 𝑘⏟
𝑥

= 𝑐⏟
𝑦
)

= Pr(𝑚 ⊕ (𝑚 ⊕ 𝑘) = 𝑚 ⊕ 𝑐)
= Pr((𝑚 ⊕ 𝑚) ⊕ 𝑲 = 𝑚 ⊕ 𝑐)

= Pr(𝑲 = 𝑚 ⊕ 𝑐) = 1
2𝑛

because the bold variables (the random values) can be rewrited.

A good property of the ⊕ is:

𝑦 = 𝑥 ⟺ 𝑚 ⊕ 𝑦 = 𝑚 ⊕ 𝑥

If you fix the value of 𝑚 then you have a permutation of the all possible strings because the
second value can vary. In fact, we’re using this property on the second line.

Notably 1
2𝑛  does depend on 𝑚 and so we can conclude that

Pr(𝑪 = 𝑐 | 𝑴 = 𝑚0) = Pr(𝑪 = 𝑐 | 𝑴 = 𝑚1) = 1
2𝑛 .
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■

Theorem (Shannon) If an encryption scheme is perfectly secure then |𝒦| ≥ |ℳ|.

Proof

We proceed by contradiction assuming the existence |𝒦| < |ℳ|. Suppose that 𝑐 ∈ 𝒞 is such
that Pr(𝑪 = 𝑐) > 0. Let us define

ℳ(𝑐) ≝ {�̂� | �̂� = 𝖣𝖾𝖼(𝑐, 𝑘)  for some 𝑘 ∈ 𝒦}

We have all the possible messages by decryption. The set ℳ(𝑐) can’t be too big. In particular
since 𝖣𝖾𝖼 is deterministic it can’t contain more than |𝒦| messages.

|ℳ(𝑐)| ≤ |𝒦| < |ℳ|

So ℳ(𝑐) ⊂ ℳ and there is a 𝑚′ ∈ ℳ such that 𝑚′ ∉ ℳ(𝑐).

Pr(𝑴 = 𝑚′ | 𝑪 = 𝑐) = 0 ≠ Pr(𝑴 = 𝑚′)

This because 𝑚′ ∉ ℳ(𝑐). “≠” because there is no assumption whatsoever about the distribution
over messages and the encryption scheme is perfectly secure. But, the fact they can’t have the
same value is a contradiction!

■
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3. Private-Key Encryption and Pseudorandomness
We need to work with strings because we need to measure the length of the input. Modern
cryptography is all about assumptions.

A concrete approach is a way to define an encryption scheme with a pair made of time of success
at most 𝑡 and a probability at most 𝜀. The 𝑡 boundary depends on the hardware so it becomes
obsolete for new generations.

An asymptotic approach uses a parametric notion of time and error. Everything depends on
a security parameter 𝑛 (it is very convenient). For instance, the length of the key is meant as
goal for the security. Efficiency is defined for PPT (Probabilistic Polynomial Time) algorithms
but low probability of success is captured by negligible functions (function converges to 0 when
security parameter grows, a very low probability). A scheme is secure if every PPT adversary
can break the scheme with only negligible probability. Here, we don’t depend on underlying
hardware.

3.1. PPT
A probabilistic algorithm 𝐴 is said to be PPT if there’s a polynomial 𝑝 that defines an
upper-bound on the computation time of 𝐴 independently on the outcomes of the performed
probabilistic choices.

𝑝 bounds the average execution time of 𝐴.

This is very similar to the complexity class BPP (see “Modelli concorrenti” class).

You could use Non Deterministic Turing Machine for this kind of algorithms, if you want to.

3.2. Negligible functions
A function 𝑓 : ℕ → ℝ is said to be negligible ⟺ for every polynomial 𝑝 : ℕ → ℕ there exist
𝑁 ∈ ℕ such that for every 𝑛 > 𝑁  it holds 𝑓(𝑛) < 1

𝑝(𝑛) .

An example is 𝑛 ↦ 2−𝑛, 𝑛 ↦ 2−
√

𝑛, 𝑛 ↦ 𝑛− log 𝑛

Lemma The set of all negligible functions called 𝒩𝒢ℒ is closed for sum, product and product
by an arbitrary polynomial.

The class of the lemma above is used for robust security definitions.

If the adversary have no chance to break the class we can’t prove anything.

3.3. Limited resources and possible attacks
We assume that |𝒦| ≫ |ℳ|. If this happens an inefficient adversary can be capable to break
the scheme.

Assuming |𝒦| ≪ |ℳ| we could construct two kinds of attacks:

1. in a ciphertext-only context we could decrypt a ciphertext 𝑐 with all possible keys.

2. we could use a known-plaintext context observing (𝑚1, 𝑐1), …, (𝑚𝑙, 𝑐𝑙) using a key 𝑘
completely random and then check if 𝖣𝖾𝖼𝑘(𝑐𝑖) = 𝑚𝑖 for every 𝑖. We have a success-probability
very very low.

3.4. Assumptions
We already mentioned the impossibility of demonstrating scheme unconditionally.

∀𝐴 ∈ PPT.¬ 𝐁𝐑𝐊(Π, 𝐴) ⟺ ¬∃𝐴 ∈ PPT. 𝐁𝐑𝐊(Π, 𝐴)

12



We’re using De Morgan laws to change the statements in the below forms which use two
implications instead of a single iff.

The best we can do is an assumption of the same form considering two different schemes. We
can do so exploiting the duality of what we actually do.

∀𝐵 ∈ PPT.¬ 𝐁𝐑𝐊(Ξ, 𝐵) ⇒ ∀𝐴 ∈ PPT.¬ 𝐁𝐑𝐊(Π, 𝐴)

This proof by reduction is observing that formula above holds

⇕

∃𝐴 ∈ PPT. 𝐁𝐑𝐊(Π, 𝐴) ⇒ ∃𝐵 ∈ PPT. 𝐁𝐑𝐊(Ξ, 𝐵)

Figure 3: Proof by reduction

3.5. Different definition for “encryption scheme”
We want an efficient algorithm, PPT for sure, which has:

• 𝖦𝖾𝗇 function takes an input string length 1𝑛 and its output must be long enough, we say
|𝑘| > 𝑛.

• 𝖤𝗇𝖼 function is probabilistic and produces, of course, different outputs (𝑚, 𝑐) from different
keys.

• 𝖣𝖾𝖼 is deterministic.

We say it is correct if 𝖣𝖾𝖼𝑘(𝖤𝗇𝖼𝑘(𝑚)) = 𝑚.

𝓁(𝑛) with 𝑛 is the security parameter generated by 𝖦𝖾𝗇. In this case 𝓁 is a parameter which
grows up more than linear time; we say that encryption scheme has a fixed length.

We want a more clear definition for efficiency!

A security scheme defined as semantic security is, despite its difficulties, mentioned on the book
and it is a theorization of the Shannon algorithm. So, another way is the adaption of the notion
of experiment about perfect secrecy. We can’t be sure which is the length of the message but,
for instance, you may know the difference of two ciphertexts from a 10MB and a 4GB files
(ciphertexts could have lengths 10MB + some and 4GB + some). If you just pass 𝑛 the adversay
can be capable of finding the length in log 𝑛 ‘cause its binary nature.

𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π(𝑛):

1 (𝑚0, 𝑚1) ← 𝐴(1𝑛)
2 if |𝑚0| ≠ |𝑚1| then return 0
3 𝑘 ← 𝖦𝖾𝗇(1𝑛)
4 𝑏 ← {0, 1}
5 𝑐 ← 𝖤𝗇𝖼(𝑘, 𝑚𝑏)

13



6 𝑏⋆ ← 𝐴(𝑐)
7 return ¬(𝑏 ⊕ 𝑏⋆)

Definition (Secure against passive attacks) An encryption scheme Π is said to be secure
against passive attacks or secure with respect to 𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣 ⟺ for every PPT adversary 𝐴 there
exist a function 𝜀 ∈ 𝒩𝒢ℒ such that

Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
Π,𝐴(𝑛) = 1) = 1

2
+ 𝜀(𝑛)

The probability of success for an adversary can’t be much more than 1
2  cause its binary nature.

For example, it can’t be 1. You can’t pick a negligible function after you know the length.

3.6. Pseudorandom Generator
Starting from the idea of the OTP 𝑘 ⊕ 𝑚 = 𝑐 we could use a greater version of the key 𝑘 such
that 𝐺(𝑘) ⊕ 𝑚 = 𝑐.

𝐺 function must have some properties: first of all it should work in polynomial time; it can’t
add randomization because you won’t be able to have the same key for decryption; it must have
some kind of pseudorandomness not duplicating data as mentioned before.

Definition (Pseudorandom Generator) Given 𝓁 : ℕ → ℕ is a polynomial function called
expansion factor. Also, given 𝐺 a deterministic algorithm that, for every 𝑠 ∈ {0, 1}∗ outputs a
string 𝐺(𝑠) ∈ {0, 1}𝓁(|𝑠|). We say that 𝐺 is a pseudorandom generator PRG ⟺

1. For every 𝑛 ∈ ℕ it holds 𝓁(𝑛) > 𝑛.

2. 𝐺 is polytime.

3. For every PPT algorithm 𝐷 ∃𝜀 ∈ 𝒩𝒢ℒ such that

| Pr(𝐷(𝑠) = 1) − Pr(𝐷(𝐺(𝑟)) = 1)| ≤ 𝜀(𝑛)

where 𝑠 and 𝑟 are random of length 𝓁(𝑛) and n.

It produces something random which is not really is. This function is not always based on
polynomial time because it depends on the output of 𝐺.

Only a negligible function can return in output another negligible output. For example, given
𝓁(𝑛) = 2𝑛 we have an output of 𝐺 based on the possible 2𝑛 strings of length 2𝑛 which is 22𝑛.
But 2𝑛

22𝑛 = 1
2𝑛 .

We must be sure that a brute-force attack can’t be available, and we can be sure about that
using a sufficiently large 𝑛.

The pseudorandom property can’t be proved, so we’re assuming to have this kind of generator
in our PC, but, as Ugo said, “who knows?”.

Definition (PRG-induced scheme) Given a PRG 𝐺 with expansion factor of 𝓁 the scheme
Π𝐺 = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) is

• 𝖦𝖾𝗇 : ℕ → ℕ has the same probability for input strings 1𝑛 to have an output string of length
𝑛.

• 𝖤𝗇𝖼(𝑚, 𝑘) = 𝐺(𝑘) ⊕ 𝑚

• 𝖣𝖾𝖼(𝑐, 𝑘) = 𝐺(𝑘) ⊕ 𝑐

14



Correctness is defined as 𝖣𝖾𝖼(𝖤𝗇𝖼(𝑚, 𝑘), 𝑘) = (𝐺(𝑘) ⊕ 𝑚) ⊕ 𝐺(𝑘) = 𝑚.

Lemma The negligible functions are closed with respect to multiplication by a polynomial,
i.e. if 𝜀 ∈ 𝒩𝒢ℒ and 𝑝 is any polynomial, then 𝑛 ↦ 𝜀(𝑛) · 𝑝(𝑛) is negligible.

Proof

From the hypothesis 𝜀 ∈ 𝒩𝒢ℒ we know that for every pair of polynomials 𝑟, 𝑞 it holds that

𝜀(𝑛) < 1
𝑟(𝑛) · 𝑞(𝑛)

∀𝑛 ≥ 𝑁 (⋆)

for a certain 𝑁 ∈ ℕ.

The product under the bar of the division is also a polynomial.

We now want to test the 𝜀 · 𝑝 with all possible polynomials.

Proving that 𝜀 · 𝑝 is negligible, let’s consider any polynomial 𝑞 and prove that for every 𝑛 ≥ 𝑀
holds (𝜀 · 𝑝)(𝑛) < 1

𝑞(𝑛) .

We can exploit (⋆) and pick 𝑟 = 𝑝. This way

(𝜀 · 𝑝)(𝑛) = 𝜀(𝑛) · 𝑝(𝑛) < 1
𝑝(𝑛) · 𝑞(𝑛)

· 𝑝(𝑛)

= 𝜀(𝑛) < 1
𝑞(𝑛)

∀𝑛 ≥ 𝑁 𝑀 = 𝑁

𝑀  it could be different of what 𝑁  is from the (⋆). So we just keep them separated, not using
the usual max(𝑁1, 𝑁2).

■

Theorem If 𝐺 is a PRG ⇒ Π𝐺 is secure against passive attacks.

Proof

It’s done by reduction.

∃𝐴 ∈ PPT. 𝐁𝐑𝐊(𝐴, Π𝐺) ⇒ ∃𝐷 ∈ PPT. 𝐁𝐑𝐊(𝐷𝐴, 𝐺)

We’re assuming an adversary. Out of any successful adversary 𝐴 for Π𝐺 a distinguisher 𝐷𝐴
(because 𝐷 depends on 𝐴) which uses 𝐴 as a subroutine.

𝑥 works as the pseudorandom input. 𝑥 is streched here, so we need to compute 𝑛 first using an
inverse of 𝓁 function.

𝐷𝐴(𝑥) :
1 𝑛 ← 𝓁−1(|𝑥|)
2 𝑚0, 𝑚1 ← 𝐴(1𝑛)
3 if |𝑚0| ≠ |𝑚1| then return 0
4 𝑏 ← {0, 1}
5 𝑐 ← 𝑚𝑏 ⊕ 𝑥
6 𝑏⋆ ← 𝐴(𝑐)
7 return ¬(𝑏 ⊕ 𝑏⋆)
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If 𝐴 works in polynomial time then 𝐷𝐴 works in polynomial time too.

We want to prove that

𝐁𝐑𝐊(𝐴, Π𝐺) ⇒ 𝐁𝐑𝐊(𝐷𝐴, 𝐺)

where the first part is

𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π𝐺(𝑛) ≁ FlipCoin

and the latter is

𝐷𝐴(𝐺(𝑆)) ≁ 𝐷𝐴(𝑟)

Breaking a scheme is often a relational property.

Now, we want to prove

(1) 𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π𝐺(𝑛) = 𝐷𝐴(𝐺(𝑆))

and

(2) FlipCoin = 𝐷𝐴(𝑟)

(1) We proceed by

Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π𝐺(𝑛) = 1) = Pr(𝐷𝐴(𝐺(𝑆)) = 1)

and to do so we just can see the definitions for 𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π𝐺 and 𝐷𝐴(𝐺(𝑆)). The two pseudocodes

output the same result.

(2) We proceed looking that

Pr(𝐷𝐴(𝑟) = 1) ≡ Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴, OTP = 1) = 1

2

the latter is

𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴, OTP(𝑛) :

1 𝑘 ← {0, 1}𝓁(𝑛)

2 𝑚0, 𝑚1 ← 𝐴(1𝑛)
3 𝑏 ← {0, 1}
4 𝑐 ← 𝑚𝑏 ⊕ 𝑘
5 𝑏⋆ ← 𝐴(𝑐)
6 return ¬(𝑏⋆ ⊕ 𝑏)

So we proved that Pr(𝐷𝐴(𝑟) = 1) is 1
2  and so the FlipCoin test is.

■

Example

It is the exercise 2.6 from the Exercise book.

We want to prove that
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Pr(𝐴(𝖤𝗇𝖼(𝑘, 𝑚)) = lastbit(𝑚)) = 1
2

+ 𝜀(𝑛)

where 𝜀 is a negligible function. Of course there’s a 1
2  on the result but, that 𝜀(𝑛) is proved

by reduction.

So, the proof is

∃𝐵 ∈ PPT.𝐁𝐑𝐊𝑙𝑏(𝐵, Π) ⇒ ∃𝐴 ∈ PPT.𝐁𝐑𝐊𝑒𝑎𝑣(𝐴, Π)

𝑙𝑏 is the “last bit”. In other words, if an adversary can be capable of break the scheme knowing
the last bit, it implies that exists another adversary capable to break the scheme in the usual way.

The adversary runs 𝓁(𝑛) bits producing randomly 𝑚0, 𝑚1 except for the last one bit.

Let us build the adversary 𝐴 using 𝐵 as a subroutine

function 𝐴FIRST(1𝑛) :
1 𝑤 ← {0, 1}𝓁(𝑛)−1

2 return (𝑤0, 𝑤1)

function 𝐴SECOND(𝑐) :
1 return 𝐵(𝑐)

Now, we just want to prove that

Pr(𝐵(𝖤𝗇𝖼(𝑘, 𝑚)) = lastbit(𝑚)) ≠ FlipCoin

⇓

Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π(𝑛) = 1) ≠ FlipCoin

but this is the same of what we did in the page before this one because equivalents. So the
proving becomes

FlipCoin = FlipCoin

and

Pr(𝐵(𝖤𝗇𝖼(𝑘, 𝑚)) = lastbit(𝑚)) = Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π(𝑛) = 1)

This can be easily proved by examining the pseudocodes of 𝐴 and 𝐵.

Example

This is the exercise 2.7 from the Exercises book.

We have that

Π secure, Θ secure ⇒ Π#Θ secure
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to prove that we could have by reduction that (using De Morgan with two negations) that

∃𝐴. 𝐁𝐑𝐊(𝐴, Π#Θ) ⇒ ∃𝐵. 𝐁𝐑𝐊(𝐵, Π) ∨ ∃𝐵. 𝐁𝐑𝐊(𝐵, Θ)

but this is not really trivial, we should work a lot on :sad:

But, the other implication

Π#Θ secure ⇒ Π secure, Θ secure

we proceed by proving

∃𝐵. 𝐁𝐑𝐊(𝐵, Π) ∨ ∃𝐵. 𝐁𝐑𝐊(𝐵, Θ) ⇒ ∃𝐴. 𝐁𝐑𝐊(𝐴, Π#Θ)

and that’s easier because we can split the prove by two cases

∃𝐵. 𝐁𝐑𝐊(𝐵, Π) ⇒ ∃𝐴. 𝐁𝐑𝐊(𝐴, Π#Θ)

∃𝐵. 𝐁𝐑𝐊(𝐵, Θ) ⇒ ∃𝐴. 𝐁𝐑𝐊(𝐴, Π#Θ)

For example, the first one can be proved by building an adversary for Π#Θ from an adversary
for Π.

function 𝐵FIRST(1𝑛) :
1 ⟨𝑚Π

0 , 𝑚Π
1 ⟩ ← 𝐴(1𝑛)

2 return ⟨𝑚Π
0 · 𝑚, 𝑚Π

1 · 𝑚⟩

where 𝑚 is any fixed message.

function 𝐵SECOND(𝑐) :
1 ⟨𝑐Π, 𝑐Θ⟩ ← 𝑐
2 return 𝐴SECOND(𝑐Π)

we strip the last part and fill the rest. We can’t stop here sadly.

Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐴,Π(𝑛) = 1) = 1

2
+ 𝜂(𝑛)

⇓

Pr(𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣
𝐵,Π#Θ(𝑛) = 1) = 1

2
+ 𝜉(𝑛)

where 𝜂, 𝜉 are not negligible.

3.6.1. Variable-Length messages
First of all we need to define the algorithm below.

Definition (Variable Output-Length Generator) A deterministic polytime algorithm
𝐺 is said to be Variable Output-Length Pseudorandom Generator if from a seed 𝑠 ∈ {0, 1}𝑛

and a string in the form 1𝓁 outputs a binary string 𝐺(𝑠, 1𝓁) such that
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1. if 𝓁 < 𝓁′ the string 𝐺(𝑠, 1𝓁) is a prefix of 𝐺(𝑠, 1𝓁′).

2. for any polynomial 𝑝 : ℕ ↦ ℕ the algorithm 𝐺𝑝 defined by setting 𝐺𝑝(𝑠) = 𝐺(𝑠, 1𝑝(|𝑠|)) is a
random generator.

The output can be much longer pumping the second parameter. This is not limited by an
expansion factor. This produces a stream of bits.

Now, given a variable output-length pseudorandom generator 𝐺 we can generalize Π𝐺 as

• 𝖤𝗇𝖼(𝑚, 𝑘) = 𝐺(𝑘, 1|𝑚|) ⊕ 𝑚

• 𝖣𝖾𝖼(𝑐, 𝑘) = 𝐺(𝑘, 1|𝑐|) ⊕ 𝑐

Lemma For every 𝐺 it’s possible to construct a variable output-length generator 𝐻 from 𝐺.

RC4 from Linux (https://en.wikipedia.org/wiki/RC4) works pretty much like that. They’re not
encryption schemes and can’t be proved that they satisfy these axioms.

Despite what the book says, they can be used for a lot of things other than just ciphers.

3.6.2. Multiple Encryptions
The ciphertexts seen until now are just a string 𝑐, not a splitted string (or at the least it is
what we assumed) but this is restrictive.

An adversary which outputs two vectors over two strings of messages is defined by 𝖯𝗋𝗂𝗏𝖪mult.

The key in OTP is supposed to be used only once, so it is not secure here.

So, the adversary produces 𝒎𝟎 = (𝑚1
0, …, 𝑚𝑡

0) and 𝒎𝟏 = (𝑚1
1, …, 𝑚𝑡

1) so the cipher becomes
𝒄 = (𝑐1, …, 𝑐𝑡).

Pr(𝖯𝗋𝗂𝗏𝖪mult
Π,𝐴(𝑛) = 1) = 1

2
+ 𝜀(𝑛)

Lemma Π𝐺 is not secure with respect to 𝖯𝗋𝗂𝗏𝖪mult, not even if 𝐺 is pseudorandom.

Proof

Let us define an adversary 𝐴 against Π𝐺, showing that

Pr(𝖯𝗋𝗂𝗏𝖪mult
𝐴,Π𝐺(𝑛) = 1) = 1

2
+ 𝜂(𝑛)

with 𝜂 not negligible.

function 𝐴FIRST(1𝑛) :
1 return ⟨(0𝓁(𝑛), 0𝓁(𝑛)), (0𝓁(𝑛), 1𝓁(𝑛))⟩

function 𝐴SECOND(𝒄) :
1 ⟨𝑐1, 𝑐2⟩ ← 𝒄
2 if 𝑐1 = 𝑐2 then return 0
3 else return 1

we can explicitly analyse the probability
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Pr(𝖯𝗋𝗂𝗏𝖪mult
𝐴,Π𝐺 = 1) =

= 1
2

Pr(𝖯𝗋𝗂𝗏𝖪mult
𝐴,Π𝐺(𝑛) = 1 | 𝑏 = 0) +

1
2

Pr(𝖯𝗋𝗂𝗏𝖪mult
𝐴,Π𝐺(𝑛) = 1 | 𝑏 = 1) =

= 1
2

· 1 + 1
2

· 1 = 1
2

+ 1
2

= 1

■

Theorem If 𝖤𝗇𝖼 is deterministic, then the scheme Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) can’t be secure with
respect to 𝖯𝗋𝗂𝗏𝖪mult.

So, the stream ciphers are not useless in the context of multiple encryptions but we need 𝖤𝗇𝖼
with an internal state.

Figure 4: Synchronized mode

But this has a kind of state.

Figure 5: Unsynchronized mode

This last one uses an 𝐈𝐕, the Initialization Vector. It introduces some confusion, like a
randomness.

3.6.3. Security against CPA attacks
We have the assumption of the oracle for 𝖤𝗇𝖼𝑘(·) which, once called for a message 𝑚, it’ll returns
a 𝑐 = 𝖤𝗇𝖼𝑘(𝑚). It’s just some constraint of how many times the adversary can ask to the oracle
in a time.

Definition An encryption scheme Π is secure against CPA attack (it’s an active attack) ⟺
for every adversary 𝐴 there exist a negligible function 𝜀 such that

Pr(𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π (𝑛) = 1) ≤ 1

2
+ 𝜀(𝑛)
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Since this kind of active attacks are more efficacy we need some lemma.

Lemma (1) Any scheme Π that is secure with respect to 𝖯𝗋𝗂𝗏𝖪CPA is secure with respect to
𝖯𝗋𝗂𝗏𝖪𝑒𝑎𝑣.

Lemma (2) Any scheme Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) that is secure with respect to 𝖯𝗋𝗂𝗏𝖪CPA must
be such that Enc is probabilistic.

Theorem Every encryption scheme that is CPA-secure is secure even in case of multiple
encodings.

Since PRG are deterministic, a scheme Π𝐺 wouldn’t be CPA-secure. We need something
probabilistic such as PRF.

3.7. Pseudorandom Function
The output of a pseudorandom generator is a stream but a pseudorandom function returns
a function.

• It takes two strings as input. E.g. {0, 1}⋆ × {0, 1}⋆ → {0, 1}⋆.

• A binary partial function 𝐹  is length-preserving ⟺ 𝐹(𝑘, 𝑥) is defined ⟺ |𝑘| = |𝑥| and in
that case |𝐹 (𝑘, 𝑥)| = |𝑥|. It’s only defined when the two strings are the same length.

• Given a length-preserving binary partial function 𝐹 , we denote by 𝐹𝑘 the function {0, 1}|𝑘| ↦
{0, 1}|𝑘| defined in the natural way. This it the currying for function programming.

• A binary partial function is efficient ⟺ there exist a polytime algorithm that computes it.

• We consider the space of functions {0, 1}𝑛 ↦ {0, 1}𝑛.

This space is finite and has cardinality 2𝑛·2𝑛 , because any of its function can be seen as a
table of binary values with 2𝑛 rows and 𝑛 columns.

It therefore makes sense to consider uniform distribution on such a space, which assigns
probability 1

2𝑛·2𝑛  to every function.

Definition Given a binary partial function 𝐹 , which is length-preserving and efficient, we
say that 𝐹  is a pseudorandom function (PRF) ⟺ for every distinguisher 𝐷 that is PPT there
exist a negligible function 𝜀 such that

| Pr(𝐷𝐹𝑘(·)(1𝑛) = 1) − Pr(𝐷𝑓(·)(1𝑛) = 1)| ≤ 𝜀(𝑛)

𝐷 is a little bit different than other functions, such as generators. It’s linked to two different
functions here.

• 𝑘 is chosen among all strings of length 𝑛 randomly.

• 𝑓(·) is chosen among all functions from {0, 1}𝑛 to {0, 1}𝑛 randomly. It’s very hard to predict
the output unless you’ve already called the function with the same input.

So it calls the function without knowing 𝐹𝑘.

Considering 𝐹(𝑘, 𝑥) = 𝑥, we do not have 𝐹  pseudorandom because a 𝐷 could query the oracle
on 0𝑛, output 1 if the result of the query is 1 and 0 otherwise.

Pr(𝐷𝐹𝑘(·)(1𝑛) = 1) = 1 this because 𝐹(𝑘, 𝑥) returns 𝑥.

Pr(𝐷𝑓(·)(1𝑛) = 1) = 1
2𝑛

thus
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| Pr(𝐷𝐹𝑘(·)(1𝑛) = 1) − Pr(𝐷𝑓(·)(1𝑛) = 1)| ≤ 1 − 1
2𝑛

and that 1 − 1
2𝑛  is not negligible.

As with pseudorandom generators, the existence of pseudorandom functions is not known in
an absolute sense. From a pseudorandom generator we can construct a pseudorandom function
and viceversa. Block ciphers use PRF.

Definition (PRF-Induced Scheme) Given a pseudorandom function 𝐹 , the scheme Π𝐹 =
(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) is defined as follows:
• The algorithm 𝖦𝖾𝗇 on input 1𝑛 outputs each string of length 𝑛 with same probability, i.e.

1
2𝑛 .

• 𝖤𝗇𝖼(𝑚, 𝑘) is defined as the (or binary encoding) pair ⟨𝑟, 𝑠⟩, where 𝑟 is a random string |𝑘|
bits long and 𝑠 = 𝐹𝑘(𝑟) ⊕ 𝑚. That ⊕ operation looks random unless some bad events those
eventually could happen not really frequently.

• 𝖣𝖾𝖼(𝑐, 𝑘) returns 𝐹𝑘(𝑟) ⊕ 𝑠. So we have 𝐹𝑘(𝑟) ⊕ (𝐹𝑘(𝑟) ⊕ 𝑚) = 0 ⊕ 𝑚 = 𝑚.

So, Π𝐹  is a correct encryption scheme. The key 𝑘 is unknown ofc. This scheme is commonly
used on Internet.

Theorem 𝐹  is a PRF ⇒ Π𝐹  is secure against CPA attacks.

Proof

It’s divided in two parts.

1. We study a Π̃ = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) which is an idealized version of Π𝐹 . Here,
• 𝖦𝖾𝗇, rather than generating a 𝑛-bit string, it generates a random function from {0, 1}𝑛

to itself, namely it fills a truth table of the Figure 6.

Figure 6: Truth table

This means 𝖦𝖾𝗇 is not efficiently computable but this is not a problem because Π̃ is just
an idealized scheme, it won’t be used in pratice.

• 𝖤𝗇𝖼 is defined similarly to

𝖤𝗇𝖼𝐹 (m):
1 𝑟 ← {0, 1}𝑛

2 return ⟨𝑟, 𝑓(𝑟) ⊕ 𝑚⟩

where 𝑓(𝑟) is the key for now.
• 𝖣𝖾𝖼 is defined as above for 𝖤𝗇𝖼.

How to prove that Π̃ is CPA-secure without any assumptions? We just have to look at the
interaction between any adversary 𝐴 and Π̃ in the experiment 𝖯𝗋𝗂𝗏𝖪CPA. We should now see
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about Π̃. It can in particular query the encryption oracle and get from it some results, in
the following form

⟨𝑑1, ⟨𝑟1, 𝑠1⟩⟩, ⟨𝑑2, ⟨𝑟2, 𝑠2⟩⟩, …, ⟨𝑑𝓁, ⟨𝑟𝓁, 𝑠𝓁⟩⟩

where

𝑑𝑖 is the 𝑖-th message.

𝑟𝑖 is the 𝑖-th random value generated internally by 𝖤𝗇𝖼. It’s a completely random row in the
truth table of the Figure 6.

𝑠𝑖 = 𝑓(𝑟𝑖) ⊕ 𝑚𝑖.

The adversary, moreover, also receives the “challenge ciphertext”, namely ⟨𝑟, 𝑠⟩ such that
𝑠 = 𝑓(𝑟) ⊕ 𝑚𝑏 where 𝑏 is random.

The adversary has a “bella botta di culo” when 𝑟 is equals to one of the 𝑟𝑖. The reasoning
we are going to do is based on the probabilist event 𝑟 = 𝑟𝑖, we call 𝚁𝚎𝚙𝚎𝚊𝚝.

• If 𝚁𝚎𝚙𝚎𝚊𝚝 holds, then they could easily determine 𝑓(𝑟) = 𝑓(𝑟𝑖) and thus 𝑚𝑏 because they
already know 𝑏.

• If 𝚁𝚎𝚙𝚎𝚊𝚝 does not hold, then 𝐴 cannot guess anything about 𝑏, because 𝑓(𝑟) would be a
genuinely random value about which 𝐴 knows nothing

Now,

Pr(𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π̃ (𝑛) = 1) = Pr(𝖯𝗋𝗂𝗏𝖪CPA

𝐴,Π̃ (𝑛) = 1 | 𝚁𝚎𝚙𝚎𝚊𝚝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=1

· Pr(𝚁𝚎𝚙𝚎𝚊𝚝) +

+Pr(𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π̃ (𝑛) = 1 | ¬ 𝚁𝚎𝚙𝚎𝚊𝚝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=1/2

· Pr(¬ 𝚁𝚎𝚙𝚎𝚊𝚝)⏟⏟⏟⏟⏟⏟⏟
=1

≤

≤ 1 · Pr(𝚁𝚎𝚙𝚎𝚊𝚝) + 1
2

· 1

We can do that because Pr(𝐴) = Pr(𝐵) · Pr(𝐴|𝐵) + Pr(¬𝐵) · Pr(𝐴|¬𝐵).

Pr(𝚁𝚎𝚙𝚎𝚊𝚝) can’t be too big because 𝓁 ≤ 𝑞(𝑛) where 𝑞 is polynomial as a consequence
Pr(𝚁𝚎𝚙𝚎𝚊𝚝) is upper-bounded by 𝑞(𝑛)

2𝑛  thanks to the fact that Pr(𝑟 = 𝑟𝑖) = 1
2𝑛  if 𝑟 is fixed

string, and exploiting union bounds Pr(𝐴 ∪ 𝐵) ≤ Pr(𝐴) + Pr(𝐵).

So,

Pr(𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π̃ (𝑛) = 1) ≤ 1

2
+ 𝑞(𝑛)

2𝑛

= 1
2

+ 𝜀(𝑛)

where 𝑞(𝑛)
2𝑛  is negligible.

2. The second part is a properly reduction. In particular we assume 𝐴 breaks Π𝐹  namely that
Pr(𝖯𝗋𝗂𝗏𝖪CPA

𝐴,Π𝐹 (𝑛)) = 1
2 + 𝜂(𝑛) where 𝜂 is not negligible, and we build from 𝐴 a distinguisher

𝐷𝐴 for 𝐹 . This function 𝐷𝐴 has access to an oracle for either 𝐹𝑘(·) or 𝑓(·) named 𝐻.

function 𝐷𝐴(1𝑛) :

• we call 𝐴(1𝑛) and wait until it produces 𝑚0, 𝑚1.
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If in the meantime 𝐴 calls the oracle for 𝖤𝗇𝖼𝑘(·) on a value 𝑚, we prooced by

‣ creating a random value 𝑟.

‣ feeding 𝐻 with 𝑟, obtaing 𝑠.

‣ we compute 𝑠 ⊕ 𝑚 = 𝑡.

‣ we return ⟨𝑟, 𝑡⟩.

• we draw 𝑏 at random.

• we compute the encryption of 𝑚𝑏 by using 𝐻 thus simulating 𝖤𝗇𝖼𝑘.

• we feed the the obtained ciphertext to 𝐴 which returns 𝑏⋆. If 𝐴 queries 𝖤𝗇𝖼𝑘(·) we have
to proceed as before.

• we return ¬(𝑏 ⊕ 𝑏⋆).

𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π𝐹 (𝑛) ≠ FlipCoin

⇓

𝐷𝐹𝑘(·)
𝐴 (1𝑛) ≠ 𝐷𝑓(·)

𝐴 (1𝑛)

The left equivalence is a consequence of out way of definition for 𝐷𝐴.

For the right equivalence, we proved, in the step 1, Pr(𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π̃ (𝑛) = 1) = FlipCoin = 1

2
and this is an equivalence because equals to 𝐷𝑓(·)

𝐴 (1𝑛).

In other words

| Pr(𝐷𝐹𝑘(·)
𝐴 (1𝑛) = 1) − Pr(𝐷𝑓(·)

𝐴 (1𝑛) = 1)| =

= | Pr(𝖯𝗋𝗂𝗏𝖪CPA
𝐴,Π𝐹 (𝑛) = 1) − Pr(𝖯𝗋𝗂𝗏𝖪CPA

𝐴,Π̃ (𝑛) = 1)| =

= | 1
2

+ 𝜂(𝑛) − 1
2

| = 𝜂(𝑛)

and 𝜂 is not negligible.

■
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For what concern what we’ve seen at Section 3.6.1, the Π𝐹  does not resolve the issue, having
some limits. But, any CPA-secure cipher Π can be generalized for messages of length 𝑛 to a
cipher Π⋆ which cuts the messages. Now we have messages 𝑛𝓁(𝑛) where 𝓁 is polynomial. It
works because each step is randomized.

𝖤𝗇𝖼⋆(𝑘, 𝑚0 ‖ … ‖ 𝑚𝓁(𝑛)) = 𝖤𝗇𝖼(𝑘, 𝑚0) ‖ … ‖ 𝖤𝗇𝖼(𝑘, 𝑚𝓁(𝑛))

Theorem If Π is CPA-secure, then Π⋆ is also CPA-secure.

3.8. Pseudorandom Permutations
A stronger version uses permutations. An example, for the example above section, you do not
decrypt calling the inverse of 𝐹𝑘, but we could do so. This because a permutation of a set 𝑋 is
a bijective function 𝑋 ↦ 𝑋. The number of permutations for a set {0, 1}𝑛 is (2𝑛)!.

This permutation is effienctly computable.

| Pr(𝐷𝐹𝑘(·),𝐹−1
𝑘 (·)(1𝑛) = 1) − Pr(𝐷𝑓(·),𝑓−1(·)(1𝑛) = 1)| ≤ 𝜀(𝑛)

The distinguisher 𝐷 has the oracle and its inverse. Most of all block ciphers (like AES or DES)
look like that, using the notion of strongly pseudorandom permutation.

3.9. Modes
The mode operation proceeds splitting the mesage into chunks (said blocks) and you call the
pseudorandom permutation function once (or more??) for each. So, for a message 𝑚 we have
𝑚1, …𝑚𝓁 each for a multiple of |𝑚| called |𝑘|.

• ECB mode is not secure ‘cause its deterministic 𝐹𝑘.

• CBC uses an IV so it could be better, and 𝐹𝑘 works as permutator.

• OFB works like CBC but it can be parallelized because you calculate 𝑚𝑖 ⊕ 𝐹𝑘 but 𝐹𝑘 has
IV as parameter, but you won’t need to precalculate all 𝑚1, …, 𝑚𝑖−1 first.

• CTR uses a counter instead of a string IV. So, for 𝑚𝑖 ⊕ 𝐹𝑘 the 𝐹𝑘 has 𝐶 + 𝑖 as input. This
is truly parallelized.
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4. Authentication
It is always a scenario used in insecure channels but the adversary 𝐴 works in a direct-mode
(in opposite of its use in secrecy).

Figure 7: Secrecy vs Auth

MAC is all the scheme, but 𝖬𝖺𝖼 is used as algorithm.

Authenticity is also named integrity. Solve the issue of secrecy doesn’t automatically solve the
authentication issue too.

A MAC Π = (𝖦𝖾𝗇, 𝖬𝖺𝖼, 𝖵𝗋𝖿𝗒) is correct when 𝖵𝗋𝖿𝗒(𝑘, 𝑚, 𝖬𝖺𝖼(𝑘, 𝑚)) = 1. We want to prove
authenticity, or better, we want to verify the tag (= the 𝖬𝖺𝖼 output). An attacker should not be
able to forge tags of message 𝑚 without knowing 𝑘 because the verification by the user would
be OK and that’s not good at all.

Let’s create an adversary which uses an oracle 𝒪 = 𝖬𝖺𝖼𝑘(·). Instead, a pair (𝑚, 𝑡) obtained
through access to the oracle is not considered a correct forge and also the adversary should be
able to do it as PPT algorithm. This kind of attack is not considered successfully.

The security for this attack is defined by the pseudocode below.

𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π(𝑛) :
1 𝑘 ← 𝖦𝖾𝗇(1𝑛) # shared key
2 (𝑚, 𝑡) ← 𝐴(1𝑛, 𝖬𝖺𝖼𝑘(·)) # forge of A

3
ℚ ← {𝑠 | 𝐴 queries Mac𝑘(·) on 𝑚} # set of messages given by A to the oracle with a
valid tag

4 return (𝑚 ∉ ℚ ∧ 𝖵𝗋𝖿𝗒(𝑘, 𝑚, 𝑡) = 1)

This not always returns 1 because by definition of correctness we want to return 1 only in some
cases. ℚ computes all the queries of the attacker wants to perform, collecting all the messages:
the result depends on this set.

It’s one-shot attack, we don’t split it in two phases.
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Definition A MAC Π is secure ⟺ for all PPT adversary 𝐴 ∃𝜀 ∈ 𝒩𝒢ℒ such that
Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π(𝑛) = 1) = 𝜀(𝑛).

We do not have a 1
2 + 𝜀(𝑛) because, given a boolean output, the probability to be 1

2  is very high.

An adversary is interested in forging meaningful messages but replay attacks can be possible
here. The adversary just could send the pair (𝑚, 𝑡) multiple times over the channel, the first
time by a legitimate user and the others by the adversary. The replay attack is another level
of abstraction.

4.1. Secure MAC
How to construct a secure MAC? We want to achieve security by pseudo randomness as the
same as the things seen until now.

Definition (PRF induced MAC) Given a PRF 𝐹 , the MAC Π𝐹 = (𝖦𝖾𝗇, 𝖬𝖺𝖼, 𝖵𝗋𝖿𝗒) is
defined as:

• 𝖦𝖾𝗇 for input 1𝑛 outputs strings long 𝑛 with the probability of 2−𝑛.

• 𝖬𝖺𝖼(𝑘, 𝑚) = 𝐹𝑘(𝑚). Really easy.

• 𝖵𝗋𝖿𝗒(𝑘, 𝑚, 𝑡) = (𝐹𝑘(𝑚) ≟ 𝑡). Basically you recompute the 𝖬𝖺𝖼(𝑘, 𝑚) and check the output
with the supposed tag 𝑡.

Of course, if you change a single bit of 𝑚 you’ll receive a completely different tag. It must be
indistinguishable from a random function. It’s not to be considered collision-resistant.

Theorem 𝐹  is a PRF ⇒ MAC Π𝐹  is secure.

Proof

This requires building an idealized MAC Π̃, which is a variation of Π𝐹  in which 𝖦𝖾𝗇 instead of
sampling 𝑘 uniformly at random, generates a function from {0, 1}𝑛 to itself randomly. Of course,
then 𝖬𝖺𝖼(𝑚, 𝑓) = 𝑓(𝑚) we can prove that Π̃ is secure, because guessing the value of 𝖬𝖺𝖼(𝑘, 𝑚)
without knowing anything about 𝑓(𝑚) is simply impossible (unless with negligible probability).

We have somehow to “compare” Π𝐹  and Π̃ and prove that they do not behave so differently,
unless 𝐹  is not pseudorandom.

As usual, then, we build a distinguisher for 𝐹  using an adversary 𝐴 for Π𝐹  as a subroutine and
following the idea that 𝐷𝐴 should call 𝐴 in such a way that has to pretend 𝐴 in running as
part of 𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐹 . In doing so, we get these two equations:

Pr(𝐷𝐹𝑘(·)
𝐴 (1𝑛) = 1) = Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐹 (𝑛) = 1) (⋆)

Pr(𝐷𝑓(·)
𝐴 (1𝑛) = 1) = Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π̃(𝑛) = 1) = 𝜀(𝑛) (⋆ ⋆)

If, now Π𝐹  is not secure, namely

Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐹 (𝑛) = 1) = 𝜂(𝑛) (𝜂  is not negligible)

then we would have that

|Pr(𝐷𝑓𝑘(·)
𝐴 (1𝑛) = 1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
(⋆⋆)

− Pr(𝐷𝐹(·)
𝐴 (1𝑛) = 1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
(⋆)+ hypothesis

| = |𝜀(𝑛) − 𝜂(𝑛)|

27



but 𝜀 ∈ 𝒩𝒢ℒ and 𝜂 ∉ 𝒩𝒢ℒ. The result above can’t be ∈ 𝒩𝒢ℒ, namely 𝐹  cannot be
pseudorandom, contradicting the hypothesis.

■

Since MAC is mostly equals to PRF, we can apply the MAC to only messages with length ≤
|𝑘| and all the properties of PRF hold.

4.2. Handling Variable-Length messages
We have the same issue of the length limit: the message must have the same length of the key.

Given a 𝑚 = 𝑚1 ‖ ⋯ ‖ 𝑚𝑛 we want to concatenate to a single tag.

There are some cases:

1. We could auth ⨁𝑛
𝑖=1 𝑚𝑖 but an adversary would easily succeed in forging 𝑝 = 𝑝1 ‖ ⋯ ‖ 𝑝𝑛

because ⨁𝑛
𝑖=1 𝑚𝑖 = ⨁𝑛

𝑖=1 𝑝𝑖 flipping two bits from both sides.

2. We could auth each block 𝑚𝑖 separately and calculate 𝖬𝖺𝖼(𝑘, 𝑚) = ⨁𝑛
𝑖=1 𝖬𝖺𝖼(𝑘, 𝑚𝑖). But an

adversary would easily succeed in forging 𝑝 = 𝑚𝜋(1) ‖ … ‖ 𝑚𝜋(𝑛) where 𝜋 is a permutation.

3. We could auth each block 𝑚𝑖 separately with the sequence number 𝑖, 𝖬𝖺𝖼(𝑘, 𝑚) =
⨁𝑛

𝑖=1 𝖬𝖺𝖼(𝑘, 𝑚𝑖 ‖ 𝑖). But an adversary would succeed anyway.

A solution is to construct a MAC Π⋆ = (𝖦𝖾𝗇, 𝖬𝖺𝖼⋆, 𝖵𝗋𝖿𝗒⋆) with

𝖬𝖺𝖼⋆(𝑘, 𝑚):
1 𝑚1 ‖ ⋯ ‖ 𝑚𝑑 ← 𝑚 # Such that |𝑚𝑖| = 𝑛

4
2 𝓁 ← |𝑚|
3 𝑟 ← {0, 1}𝑛

4

4 for 𝑖 ← 1 to 𝑑 do
5 𝑡𝑖 ← 𝖬𝖺𝖼(𝑘, 𝑟 ‖ 𝓁 ‖ 𝑖 ‖ 𝑚𝑖)
6 return (𝑟, 𝑡1, …, 𝑡𝑑)

𝖵𝗋𝖿𝗒⋆(𝑘, 𝑚, (𝑟, 𝑡1, …, 𝑡𝑑)):
1 𝑚1 ‖ ⋯ ‖ 𝑚𝑑 ← 𝑚 # Such that |𝑚𝑖| = 𝑛

4
2 𝓁 ← |𝑚|
3 for 𝑖 ← 1 to 𝑑 do
4 if 𝖵𝗋𝖿𝗒(𝑘, 𝑟 ‖ 𝓁 ‖ 𝑖 ‖ 𝑚𝑖) = 0 then
5 return 0
6 return 1

𝑟 parameter is not confidential.

You authenticate a random value fixed for each chunk and then authenticate 𝓁 which is the
length of the message. Indeed you need to return also the random value 𝑟. All chucks have the
same length. The tag is even longer than the message.

Theorem Π secure ⇒ Π⋆ secure.

4.2.1. CBC-MAC
Using CBC we would avoid the longer tag because we’d have a new 𝑡𝑖 on every iteration.
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This algorithm is truly deterministic not adding any randomness. 𝓁 returns how many chunks
we have.

𝖬𝖺𝖼CBC(𝑘, 𝑚):
1 𝓁 ← 𝓁(|𝑘|)
2 𝑚1 ‖ ⋯ ‖ 𝑚𝓁 ← 𝑚 # Such that |𝑚𝑖| = |𝑘|
3 𝑡0 ← 0𝑛

4 for 𝑖 ← 1 to 𝓁 do
5 𝑡𝑖 ← 𝐹𝑘(𝑡𝑖−1 ⊕ 𝑚𝑖)
6 return 𝑡𝓁

𝖵𝗋𝖿𝗒CBC(𝑘, 𝑚, 𝑡):
1 if 𝓁(|𝑘|) · |𝑘| ≠ |𝑚| then
2 return 0
3 return 𝑡 ≟ 𝖬𝖺𝖼CBC(𝑘, 𝑚)

Theorem 𝓁 polynomial and 𝐹  is PRF ⇒ ΠCBC is a secure MAC.

4.3. Hash functions
A function which compresses an input string to another much smaller.

𝐻 : {0, 1}⋆ × {0, 1}⋆ ↦ {0, 1}⋆

First param is a key 𝑠; the second param is string 𝑥.

If 𝐻(𝑥) = 𝐻(𝑦) with 𝑥 ≠ 𝑦 we have a collision.

Definition An hash function is a pair of PPT algorithms (𝖦𝖾𝗇, 𝐻) such that:

• 𝖦𝖾𝗇 takes an input 1𝑛 and returns a string 𝑠.

• there exist a polynomial 𝓁 such that 𝐻(𝑠, 𝑥) returns a string |𝓁(𝑛)|.

If there exist a polynomial 𝑝 such that 𝑝(𝑛) > 𝓁(𝑛), for every 𝑛, 𝐻(𝑠, 𝑥) is defined only when
|𝑥| = 𝑝(𝑛) (and 𝑠 is the parameter implicit in 𝑠), then 𝐻 is called a fixed-length hash function.

As usual, we denote 𝐻𝑠 the function that, for input 𝑥, returns 𝐻(𝑠, 𝑥) [a.k.a. 𝐻𝑠(𝑥) = 𝐻(𝑠, 𝑥)].

4.3.1. Collision resistant

𝖧𝖺𝗌𝗁𝖢𝗈𝗅𝗅𝐴,Π(𝑛):
1 𝑠 ← 𝖦𝖾𝗇(1𝑛)
2 (𝑥, 𝑦) ← 𝐴(𝑠)
3 return (𝑥 ≠ 𝑦) ∧ (𝐻(𝑥) = 𝐻(𝑦))

The key is public but the attacker tries to brute force any two messages to find a collision. An
use of an oracle 𝒪 is really useless.

Seed controls the complexity of this collision.

Definition An hash function Π = (𝖦𝖾𝗇, 𝐻) is collision-resistant ⟺ for every adversary PPT
𝐴 there exist a negligible function 𝜀 such that Pr(𝖧𝖺𝗌𝗁𝖢𝗈𝗅𝗅𝐴,Π(𝑛) = 1) ≤ 𝜀(𝑛).
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You ask to the adversary to find collision with some constraints. Some of them:
• Second pre-image resistance: give the adversary the seed 𝑠 and 𝑥 and then must find

𝑦 ≠ 𝑥 such that 𝐻𝑠(𝑥) = 𝐻𝑠(𝑦).
• Pre-image resistance: given 𝑠 and 𝑧 = 𝐻𝑠(𝑥) it must be impossible to find 𝑦 such that

𝑧 = 𝐻𝑠(𝑦). But here the adversary does not know 𝑥, so it could be seen like an inversion
function (but that is not).

The task is to find any collision, not all the possible 𝑥 ≠ 𝑦 which cause a collision.

4.3.2. Birthday attack
The length of the seed should be fixed. Here we want to brute force an hash function and check
the attack complexity. We have a 𝐻𝑠 : {0, 1}⋆ ↦ {0, 1}𝓁. It’s like the birthday paradox: bigger
the group → easier to find a collision.

Theorem (Birthday theorem) Given 𝑞 uniformly chosen random values in a finite set of
cardinality 𝑁 , the probability that two of them are identical is Θ(𝑞2

𝑁 ).

The curve starts from 0 and grows depending on 𝑁 . It is still exponential but smoothed by 𝑁 .

If we assume that the behaviour of 𝐻𝑠 is as close as possible to that of a random function (i.e.
if we are in the worst case), we can then conclude that a birthday attack where 𝑞 = Θ(2 𝓁

2 ) will
have probability of success

Θ
(
((
((2 𝓁

2 )
2

2𝓁
)
))
) = Θ(2𝓁

2𝓁 ) = Θ(1)

4.3.3. Merkle-Damgård transform
Suppose that (𝖦𝖾𝗇, 𝐻) is an hash function for messages of length 𝑝(𝑛) = 2𝑛 with output 𝑛 long
and construct from it (𝖦𝖾𝗇, 𝐻𝑀𝐷) as

𝐻𝑀𝐷(𝑠, 𝑥) :
1 𝐵 ← ⌈(|𝑥|)/𝑛⌉
2 𝑥1 ‖ … ‖ 𝑥𝐵 ← 𝑥 # such that |𝑥𝑖| = 𝑛
3 𝑥𝐵+1 ← |𝑥|
4 𝑧0 ← 0𝑛

5 for 𝑖 ← 1 to 𝐵 + 1 do
6 𝑧𝑖 ← 𝐻(𝑠, 𝑧𝑖−1‖𝑥𝑖)
7 return 𝑧𝐵+1

The first chuck is compressed many times, like a cascade scheme. 𝑧 is like an IV.

Theorem If (𝖦𝖾𝗇, 𝐻) is collision-resistant, then so is (𝖦𝖾𝗇, 𝐻𝑀𝐷).

The proof can’t be done by only a simple reduction. You have to go back in a polynomial way.

4.3.4. Use in MAC
We can put them together in a MAC. In fact, given a MAC Π = (𝖦𝖾𝗇, 𝖬𝖺𝖼, 𝖵𝗋𝖿𝗒) and an hash
function (𝖦𝖾𝗇′, 𝐻) we define MAC Π𝐻 = (𝖦𝖾𝗇𝐻 , 𝖬𝖺𝖼𝐻 , 𝖵𝗋𝖿𝗒𝐻) as:

• 𝖦𝖾𝗇𝐻 on input 1𝑛 and output ⟨𝑠, 𝑘⟩ where 𝑠 is the result of 𝖦𝖾𝗇′(1𝑛) and 𝑘 is the result of
𝖦𝖾𝗇(1𝑛). You already use the hash function to compress the message.
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• 𝖬𝖺𝖼𝐻(⟨𝑠, 𝑘⟩, 𝑚) outputs 𝖬𝖺𝖼𝑘(𝐻𝑠(𝑚)).

• 𝖵𝗋𝖿𝗒(⟨𝑠, 𝑘⟩, 𝑚, 𝑡) = 1 ⟺ 𝖬𝖺𝖼𝐻(⟨𝑠, 𝑘⟩, 𝑚) = 𝑡.

Theorem If Π is a secure MAC and (𝖦𝖾𝗇′, 𝐻) is collision-resistant, then Π𝐻 is secure.

Theorem Π secure MAC and 𝐻 is collision-resistant hash function ⇒ Π𝐻 is secure itself as
a MAC.

Proof

Recalling Π𝐻 = (𝖦𝖾𝗇𝐻 , 𝖬𝖺𝖼𝐻 , 𝖵𝗋𝖿𝗒𝐻) where 𝖬𝖺𝖼𝐻(⟨𝑠, 𝑘⟩, 𝑚) = 𝖬𝖺𝖼(𝑘, 𝐻𝑠(𝑚)).

Before doing the actual reduction, left us analyse the situation from the point of view of an
adversary 𝐴 for Π𝐻 . 𝐴 can query the oracle for 𝖬𝖺𝖼𝐻

𝐾(·) and, at some point, outputs ⟨𝑚⋆, 𝑡⋆⟩.

Let us define the following probabilistic event.

coll𝐴 = "𝐻𝑠(𝑚⋆) = 𝐻𝑠(𝑚) for some 𝑚 ≠ 𝑚⋆, 𝑚 ∈ ℚ"

We can now do some easy probabilistic reasoning:

Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐻(𝑛) = 1) = Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐻(𝑛) = 1 ∧ coll𝐴) +

+ Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐻(𝑛) = 1 ∧ ¬coll𝐴) ≤

≤ Pr(coll𝐴)⏟⏟⏟⏟⏟
Prove it is negligible 

by reduction and exploting
the collision resistant of 𝐻

+ Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐻(𝑛) = 1 ∧ ¬coll𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Prove that is neglibible by another reduction

and exploting the security of Π

(i) In the first reduction we build an adversary 𝐶 for the hash function using 𝐴 as a subroutine.
Our objective is to prove that

Pr(HasColl𝐶𝐴,𝐻(𝑛) = 1) = Pr(coll𝐴)

where 𝐶𝐴 is defined as:
• First, it produces a key ⟨𝑠, 𝑘⟩ by calling 𝖦𝖾𝗇𝐻 .
• Then, it calls 𝐴 on 1𝑛 and waits until 𝐴 produces a result.
• Whenever 𝐴 queries the oracle for 𝖬𝖺𝖼𝐻 on 𝑚, 𝐶 proceeds as follows:

‣ It first calls 𝐻𝑠 on 𝑚 and 𝖬𝖺𝖼𝑘 on the obtained result.
‣ It keeps track of the message 𝑚 in an internal “database”, call it 𝔻, also keeping track of

𝐻𝑠(𝑚).
‣ Finally, it forwards the result to 𝐴.

• After performing some queries, 𝐴 finally produces a pair ⟨𝑚⋆, 𝑡⋆⟩.
• We throw away 𝑡⋆ and we compute 𝐻𝑠(𝑚⋆) checking in 𝔻 whether any other message 𝑚 ≠

𝑚⋆ in such that 𝐻𝑠(𝑚) = 𝐻𝑠(𝑚⋆). If we find one we output ⟨𝑚, 𝑚⋆⟩, otherwise we output a
nothing (a random generated value).

We have stored in the database all the collisions did previously.

From the way we’ve designed 𝐶𝐴 it is easy to realise that

Pr(HasColl𝐶𝐴,Π(𝑛) = 1) = Pr(coll𝐴)

𝐶𝐴 is the pivot to solve the problem.

(ii) In the second reduction, we instead want to build an adversary 𝐵𝐴 for Π using 𝐴 as a
subroutine. Our objective is, of course, to build 𝐵𝐴 in such a way that
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Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐵𝐴,Π(𝑛) = 1) = Pr(𝖬𝖺𝖼𝖥𝗈𝗋𝗀𝖾𝐴,Π𝐻(𝑛) = 1 ∧ ¬coll𝐴) (⋆)

we have to design 𝐵𝐴 using 𝐴 as a subroutine. 𝐵 is supposed to be able to access to an oracle
for 𝖬𝖺𝖼𝑘(·) and it has a security param 1𝑛.

• First of all, generate a public seed by calling 𝖦𝖾𝗇𝐻(1𝑛).
• We can call the adversary 𝐴 on 1𝑛.
• While running, 𝐴 may call the oracle for 𝖬𝖺𝖼𝐻

𝑘 (·). If the parameter of the query is 𝑚, we
pass 𝐻𝑠(𝑚) to our own oracle, which of course returns a tag 𝑡 which is forwarded to 𝐴.

• 𝐴 outputs ⟨𝑚⋆, 𝑡⋆⟩ and we cannot pass them as a result. 𝑚 is a message which is not hashed
yet. So we have to pass 𝑚⋆ to 𝐻, this way obtaining 𝐻𝑠(𝑚⋆). We can then return ⟨𝐻𝑠(𝑚⋆), 𝑡⋆⟩.

We have to prove that the equality (⋆) holds. We do that by showing that the two probabilistic
events under considerations are actually the same probabilistic events.

(⇒) Suppose that 𝐵𝐴 wins against Π. This means that also 𝐴 wins, because 𝖬𝖺𝖼𝐻 is defined as
𝖬𝖺𝖼𝐻

⟨𝑠,𝑘⟩(𝑚) = 𝖬𝖺𝖼𝑘(𝐻𝑠(𝑚)). Moreover, if 𝐵𝐴 wins, 𝐻𝑠(𝑚⋆) is different from any of the queries
𝐵𝐴 made. So this also implies that ¬coll𝐴 holds, because a collision in that sense of coll𝐴 is
precisely witnessed by 𝑚 ≠ 𝑚⋆ such that 𝐻𝑠(𝑚) = 𝐻𝑠(𝑚⋆).

(⇐) Suppose that 𝐴 wins and further suppose that coll𝐴 does not hold. This implies that 𝑚⋆

as produced by 𝐴 is different from all the 𝑚 on which 𝐴 queries its oracle, and that 𝐻𝑠(𝑚⋆) =
𝐻𝑠(𝑚) for any such 𝑚 (because of ¬coll𝐴), so we are in presence of a successful attack in the
sense of 𝐵𝐴.

We then have two probabilistic events which hold in precisely the same situations, so (⋆) holds.

Without coll𝐴 this proof would be broken. The not-collision status is crucial. It is essential to
find a good pivot for a proof.

■
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5. Constructing pseudorandom objects and hash functions
in practice

5.1. Stream ciphers
Stream ciphers is usually built by a pair of algorithms:
• 𝖨𝗇𝗂𝗍: initializes the internal state with some seed starting from a key (sometimes also with IV).
• 𝖦𝖾𝗍𝖡𝗂𝗍𝗌: outputs a single bit modifying its state.

These two algorithms above are not defined to be random. How could we guarantee that?

5.1.1. Linear Feedback Shift Register
A state is 𝑛 bits long 𝑠𝑛−1𝑠𝑛−2⋯𝑠1𝑠0. 𝖦𝖾𝗍𝖡𝗂𝗍𝗌 computes a bit 𝑏 as the xor of some of the bits
and returns in output the least significant bit shifting all the others to the right. Then 𝑠𝑛−1
becomes 𝑏.

Figure 8: Linear shift

This is not random in some cases. Each bit of the seed is in the feedback loop. We can say that
LFSR is not secure.

• The behaviour is determined by its state.
• With 2𝑛 states, LFSR cycles through 2𝑛−1 states.
• Statistically speaking it is quite good.
• From the first 2𝑛 outputs 𝑦1, …, 𝑦2𝑛 it is possible to totally reconstruct the initial state (i.e.

𝑦1, …, 𝑦𝑛) and the feedback coefficients (by means of a system of linear equations, which
can be solved efficiently). Its linearity given by the feedback (just some xor) is too efficient
to compute.

5.1.2. Trivium
It still have states but the feedback loop is a bit more complicated. It uses AND which prevents
the circuit to be analysed linearly. It is used in practice but it could be broke.
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Figure 9: Trivium

5.1.3. RC4
It is used by Linux and it is implemented on software (not hardware). We have an internal
state with a vector of bytes with a length of 256: this vector represents a permutation of the
set {0, …, 255} with two other values 𝑖, 𝑗 ∈ {0, …, 255}.

Despite some statical attacks we can say that RC4 is not secure.

5.2. Block ciphers
Such a different story. We deal with function with the form 𝐹 : {0, 1}𝑛 × {0, 1}𝓁 ↦ {0, 1}𝓁 with
𝑛 can be ≠ 𝓁 and they’re constants. Attacks against block ciphers are kind of ciphertext-only,
known-ciphertext, chosen-plaintext, chosen-ciphertext. For the Kerchoff’s principle, determining
the key is sufficient to force the cipher.

5.2.1. Substitution-Permutation Network
A model with 3 phases:
• The mixing with the key. You can do a xor or taking a subset of.
• S-BOX. Chunk the key with smaller data (such as 6 bits) and apply a function for each

chunk. Be careful when you write the truth table.
‣ It must be invertible (it’s the only way to go back from the 64-bit output, except for the

xor if you fix one of the arg, of course).
‣ If you change 1 bit of the input, at most 8 bits (1 chunk) would be different because all

the other ones are unchanged (this is because you have many rounds).
• Permutation. Not compute the key, just permute.

The same transformation is applied more than once.

34



Figure 10: SPN

5.2.2. Feistel Network
It’s adopted in practice. The message is cutted in two parts. A better way to understand what
it does is to take a look at Figure 11. It is not invertible at all, it depends on 𝑓1|2|3 that are not
supposed to be invertible.

So, a message 𝑚 is splitted in two chunks of sizes 𝑚𝐿 and 𝑚𝑅.

Figure 11: Feistel Network

A function 𝑓 which depends on the key is called Mengler function.

5.2.3. DES
Its key of 56 bits is too low, so it has been broken. It’s defined with

𝐹DES : {0, 1}56 × {0, 1}64 ↦ {0, 1}64
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It is constructed as a 16-round Feistel network: for each 𝑖 ∈ {1, …, 16} there exists 𝑆𝑖 ⊆
{1, …, 16} of bits of the key that will contribute to the computation of 𝑓 at round 𝑖.

Figure 12: DES Mengler functions

In Figure 12 there are 8 S-BOX, each of them is a function {0, 1}6 ↦ {0, 1}4 designed to be
avalanche effect (the only ones responsible). Each possible configuration 𝑠 ∈ {0, 1}4 is the image
of exactly four input configurations.

5.2.3.1. 3DES
This is not a triple encryption, but a key 112 bits long.

5.2.4. AES
It is a SPN once again with a message length of 128 bits and key of 128 bits (there are 3
versions, which use 128, 192 or 256 bits for the key).

In each round, the state is seen as a 4 × 4 matrix of bytes, initially equal to the message 4 · 4 ·
8 = 128. There are 4 transformations for each:

1. AddRoundKey. A 128 subkey put in xor with the state.

2. SubBytes. One single S-BOX. Each byte in the matrix is replaced with the byte obtained
by a fixed S-BOX 8 × 8.

3. ShiftRows. Each row of the matrix is shifted to the left of a variable number of positions.
There is no permutation easy predicted.

4. MixColumns. No permutation but an invertible linear transformation for each column.

5.3. Constructing Hash Functions
They are very useful on authentication, called Hash MAC (or HMAC). Practically speaking
they’re not “keyed”. In most cases, they’re constructed from a compression function 𝐶 :
{0, 1}𝓁+𝑛 ↦ {0, 1}𝓁. You obtain something similar to the Merkle-Damgard transformation.

Using a construction named Davies-Meyer Construction, given a block cipher 𝐹 : {0, 1}𝑛 ×
{0, 1}𝓁 ↦ {0, 1}𝓁, a natural way to construct a compression function from 𝐹  is to define 𝐶 :
{0, 1}𝓁+𝑛 ↦ {0, 1}𝓁 as
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𝐶(𝑘 ‖ 𝑚) = 𝐹𝑘(𝑚) ⊕ 𝑚

Theorem If 𝐹  is modelled as an ideal cipher, then the Davies-Meyer construction induces a
collision-resistant hash-function in a concrete sense: each attacker of complexity 𝑞 cannot find
collisions with probability greater than 𝑞2

2𝓁 .

That is the same thing seen for the birthday attack. So, this is the probability of a brute attack
against an hash function.

5.3.1. MD5
It is not considered cryptographically secure. Output is 128 bits long. Still used for checksums.

5.3.2. SHA
In SHA1 the output is 160 bits long, with a possible attack of 280 function calls. Not really secure.

In SHA2 the output can be 256 or 512 bits long.

All of them use Davies-Meyer construction.

In SHA3 the output can be 256 or 512 bits long but the construction is different than the two
SHA mentioned before.
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6. Constructing pseudorandom objects and hash functions
in theory

In this theoretical approach we show that pseudorandom objects can be constructed from the
other objects whose existence is considered to be highly probable.

Figure 13: The situation in brief

The first example of Figure 13 is Π𝐺.

But we need to find something on the left for all of them.

6.1. One-Way functions
Easy to compute, hard to invert.

𝖨𝗇𝗏𝖾𝗋𝗍𝐴,𝑓(𝑛) :
1 𝑥 ← {0, 1}𝑛

2 𝑦 ← 𝑓(𝑥)
3 𝑧 ← 𝐴(1𝑛, 𝑦)
4 return 𝑓(𝑧) ≟ 𝑦

You ask to the challenger to invert a function. 𝑧 can be different than 𝑥.

Definition A function 𝑓 : {0, 1}⋆ → {0, 1}⋆ is a one-way function ⟺
1. ∃ a polytime and deterministic algorithm which computes 𝑓
2. ∀ PPT 𝐴, ∃𝜀 such that Pr(𝖨𝗇𝗏𝖾𝗋𝗍𝐴,𝑓(𝑛) = 1) ≤ 𝜀(𝑛)

One-way permutations are length-preserving one-way functions with the property that 𝑦 ∈
{0, 1}⋆ uniquely determines 𝑥 such that 𝑓(𝑥) = 𝑦.

Some functions assumed to be one-way:
• Multiplication between natural numbers.
• Subset-sum problem.

A one-way function does not entirely reveal 𝑥 but this not implies the same to parts of 𝑥. Given
a one-way function 𝑓 , we can construct 𝑔(𝑥, 𝑦) = (𝑥, 𝑓(𝑦)). 𝑔 is also one-way function because
if we could invert 𝑔, we can also invert 𝑓 . But, 𝑔(𝑥, 𝑦) reveals a part of 𝑓 (I mean 𝑥).

Definition (Hard-core predicate) A predicate ℎ𝑐 : {0, 1}⋆ ↦ {0, 1} is called hard-core
predicate of a function 𝑓 iff ℎ𝑐 is polytime computable and ∀ PPT 𝐴 holds

Pr(𝐴(𝑓(𝑥)) = ℎ𝑐(𝑥)) ≤ 1
2

+ 𝜀(𝑛)
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The adversary can’t be able to find the value of 𝑥 computing ℎ𝑐(𝑥).

For some non-one-way functions it is possible to construct trivial hard-core predicates. Eg. 𝑓 :
{0, 1}⋆ ↦ {0, 1}⋆ defined by 𝑓(𝜀) = 𝜀 and 𝑓(𝑏 · 𝑠) = 𝑠 ∀𝑏 ∈ {0, 1}, 𝑠 ∈ {0, 1}⋆, the result of 𝑓(𝑠)
does not depend on the first bit of 𝑠, which can then become a hard-core predicate.

Theorem (Goldreich-Levin) If there’s a one-way function (resp, a one-way permutation)
𝑓 , then there exist a one-way function (resp, a one-way permutation) 𝑔 and a hard-core predicate
ℎ𝑐 for 𝑔.

We do not prove this theorem because it is too difficult for this course.

The function 𝑔 is constructed from 𝑓 by setting 𝑔(𝑥, 𝑟) = (𝑓(𝑥), 𝑟) while ℎ𝑐 is defined by
ℎ𝑐(𝑥, 𝑟) = ⊕𝑛

𝑖=1 𝑥𝑖 · 𝑟𝑖. So, we’re mixing some parts of first string with some parts of the second
one.

Theorem (PRG from one-way permutation) 𝑓 one-way permutations and ℎ𝑐 hard-core
predicate for 𝑓 . Then, 𝐺 defined by 𝐺(𝑠) = (𝑓(𝑠), ℎ𝑐(𝑠)) is a PRG with 𝓁(𝑛) = 𝑛 + 1.

By definition, ℎ𝑐(𝑠), even if you know 𝑓(𝑠), is very hard to guess.

Theorem (Arbitrary Expansion Factor) If 𝐺 is a PRG with 𝓁(𝑛) = 𝑛 + 1 then exists a
PRG 𝐻 with an arbitrary expansion factor as long as it polynomial.

From 𝑠, you have 𝐺(𝑠) which stretchs the output a bit, but this “recursively” as seen in Figure 14.

Figure 14: From PRG G to PRG H

Theorem (From generators to functions) PRG 𝐺 with 𝓁(𝑛) = 2𝑛 then exists a PRF.

This is an issue of efficiency, and that’s because it is not used. All of the branches of Figure 14
are independent.

Figure 15: From PRG G to a PRF

Theorem If it exists a PRF then exists a strong PRF.

Theorem If it exists a PRG then exists a one-way function.

39



Figure 16: Overall picture
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7. Algebra number theory and related assumptions
The following number theory refers to all those numbers in set ℕ and ℤ. We use abstract
algebra, in particular the definition of groups.

The security of something depends on assumptions derived from number theory.

• 𝑎, 𝑏 ∈ ℤ, 𝑎|𝑏 means ∃𝑐 ∈ ℤ such that 𝑎 · 𝑐 = 𝑏.

• 𝑎|𝑏, 𝑎 > 0 means 𝑎 is divisor of 𝑏.

• 𝑝 ∈ ℕ is prime if there do not exists factors of it. Otherwise is named composite.

• 𝑛, 𝑚 ∈ ℕ, 𝑚 > 1, 𝑛 mod 𝑚 is the reminder of 𝑛
𝑚 .

Lemma If 𝑛, 𝑚 ∈ ℕ, 𝑚 > 1 ⇒ 𝑛 is invertible mod 𝑚, i.e. ∃𝑝 such that 𝑛 · 𝑝 mod 𝑚 = 1
whenever gcd(𝑛, 𝑚) = 1. i.e 𝑚, 𝑛 are coprime.

Factoring (find a 𝑁 = 𝑝 · 𝑞) is an hard problem, something like brute force, because we want
to invert a multiplication. If we use a classical algorithm which has 𝑂(

√
𝑁(log 𝑁)𝑘) [𝑘 is a

constant very small, like 3 that depends on the logarithm; we stop to something less than 
√

𝑁 ]
we have something polynomial on 𝑁  but not on the length of 𝑁 . We want to care about the
length of the number.

𝗐𝖥𝖺𝖼𝗍𝗈𝗋𝐴(𝑛) :
1 (𝑥, 𝑦) ← ℕ × ℕ with |𝑥| = |𝑦| = 𝑛
2 𝑁 ← 𝑥 · 𝑦
3 (𝑧, 𝑤) ← 𝐴(𝑁)
4 return 𝑧 · 𝑤 ≟ 𝑁

An adversary is responsible to find 𝑧(= 𝑥) and 𝑤(= 𝑦). The adversary 𝐴 succeeds if ∃𝜀 ∈ 𝒩𝒢ℒ
such that Pr(𝗐𝖥𝖺𝖼𝗍𝗈𝗋𝐴(𝑛) = 1) = 𝜀(𝑛).

If either 𝑥 or 𝑦 is even, then 𝑁  will be even. This does not align to the definition of hard
problem. 𝑁  will be even with a probability of 3

4 .

But, the product of two prime numbers assures to have only one way to factorize.

𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖯𝗋𝗂𝗆𝖾𝖭𝗎𝗆𝖻𝖾𝗋𝗌(𝑛): # 𝑛 is the num bits
1 for 𝑖 ← 1 to 𝑡 do
2 𝑟 ← {0, 1}𝑛−1

3 𝑝 ← 1 ‖ 𝑟
4 if 𝑝 is prime then
5 return 𝑝
6 panic()

All numbers with 𝑛 bits have the same probability to be generated.

The last bit of 𝑝 is always 1. We can be sure to have a string of length 𝑛.

Theorem (Density of a number) There exist a constant 𝑐 such that for every 𝑛 > 1 the
number of primes that can be represented in exactly 𝑛 bits is at least equals to 𝑐·2𝑛−1

𝑛 .
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The number above is exponential. When we fix the number of bits, we find that there is at least
one prime number. More specifically, there is an exponential quantity of them.

Given that theorem you can be able to value 𝑡.

So, the probability that 𝑝 is prime will be at least equal to Number of successful cases
Number of all cases :

𝑐·2𝑛−1

𝑛
2𝑛−1 = 𝑐 · 2𝑛−1

𝑛 · 2𝑛−1 = 𝑐
𝑛

The fraction 𝑐
𝑛  tends to 0 as 𝑛 → ∞, but it does very slowly. Therefore, we need to account for

the fact that this fraction is not negligible.

Thus, if 𝑡 = 𝑛2

𝑐  the probability to fail is, whenever 𝑛 ≥ 𝑐, at most equal to

(1 − 𝑐
𝑛

)
𝑡
= ((1 − 𝑐

𝑛
)

𝑛
𝑐
)

𝑛

≤ (𝑒−1)𝑛 = 𝑒−𝑛

where (1 − 𝑐
𝑛)𝑡 represent the bound of the probability of failure.

There are deterministic algorithms such as AKS to test the primality of a number in polynomial
time but also some probabilistic such as the Miller-Rabin test. The latter gets a prime number
in input and returns OK with probability 1 but if the input is a composite number returns NO
with probability 1 − 𝜀(|𝑝|).

The old experiment wFactor can use an algorithm GenModulus which, given a string 1𝑛 on
input, returns a triple (𝑁, 𝑝, 𝑞) where 𝑁 = 𝑝 · 𝑞 and 𝑝, 𝑞 are primes with 𝑛 bits. From this, we
can build

𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(1𝑛):
1 𝑝 ← {0, 1}𝑛 # 𝑝 is prime
2 𝑞 ← {0, 1}𝑛 # 𝑞 is prime
3 𝑁 ← 𝑝 · 𝑞
4 return (𝑁, 𝑝, 𝑞)

𝖥𝖺𝖼𝗍𝗈𝗋𝐴, 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(𝑛):
1 (𝑁, 𝑝, 𝑞) ← 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(1𝑛)
2 (𝑟, 𝑠) ← 𝐴(𝑁)
3 return 𝑟 · 𝑠 ≟ 𝑁

Thanks to 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌 we can say that factoring is hard relative ⟺ ∀𝐴 PPT ∃𝜀 ∈ 𝒩𝒢ℒ
such that

Pr(𝖥𝖺𝖼𝗍𝗈𝗋𝐴, 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(𝑛) = 1) = 𝜀(𝑛)

This assumption is sufficient to obtain a one-way function but not to prove the security of
public-key schemes, because quantum computer can be easy able to obtain what we want.

7.1. Group Theory
A group is an algebraic structure (𝔾, ⚬) where ⚬ is a binary operation that is associative, with
identity 𝑒 and where every 𝑔 ∈ 𝔾 has an inverse 𝑔−1.
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A finite group is said to have order equal to |𝔾|.

The ⚬ operation is named bullet. If commutative is said to be abelian.

Integer and natural numbers are not considered for this.

We can see the number as

• additive +: 𝑚𝑔 = 𝑔 + … + 𝑔⏟⏟⏟⏟⏟
𝑚 times

• multiplicative ·: 𝑔𝑚 = 𝑔 · … · 𝑔⏟
𝑚 times

7.2. Exponentiation
The computation of 𝑚 · 𝑔 or 𝑔𝑚 can be performed in a number of operations which is
polynomial in |𝑚|, i.e logarithmic in 𝑚. A fast exponentiation used in cryptography is the
binary representation of 𝑚.

For example, 𝑔11 = 𝑔8 · 𝑔2 · 𝑔1 = 𝑔23 · 𝑔21 · 𝑔20 and each of the factors, which are at most |𝑚|
can be computed in time that is linear in |𝑚|.

Theorem If (𝔾, ⚬) is a finite group where |𝐺| = 𝑚 is the order of the group then for each
𝑔 ∈ 𝔾, it is true that 𝑔𝑚 = 1𝔾.

Proof

Let’s prove the theorem in the special case in which the group is abelian.

Suppose that 𝔾 = {𝑔1, 𝑔2, …, 𝑔𝑚} and 𝑔𝑖 ≠ 𝑔𝑗 when 𝑖 ≠ 𝑗. Let’s fix any element 𝑔 ∈ 𝔾. We want
to prove

𝑔1 · 𝑔2 · … · 𝑔𝑚 = (𝑔𝑔1) · (𝑔𝑔2) · … · (𝑔𝑔𝑚) (⋆)

By contradiction, all the elements on the right side are distinct because
𝑔𝑔𝑖 = 𝑔𝑔𝑗 ⇒ 𝑔−1(𝑔𝑔𝑖) = 𝑔−1(𝑔𝑔𝑗)

⇒ (𝑔−1𝑔)𝑔𝑖 = (𝑔−1𝑔)𝑔𝑗

⇒ 𝑔𝑖 = 𝑔𝑗

⇒ 𝑖 = 𝑗

Since (𝔾, ⚬) is abelian, we can rearrange (⋆) as

𝑔1 · 𝑔2 · … · 𝑔𝑚 = 𝑔𝑚 · (𝑔1 · 𝑔2 · … · 𝑔𝑚)

we can multiply both sides by (𝑔1 · 𝑔2 · … · 𝑔𝑚)−1 obtaining

(𝑔1 · … · 𝑔𝑚) · (𝑔1 · … · 𝑔𝑚)−1 = 𝑔𝑚 · (𝑔1 · … · 𝑔𝑚) · (𝑔1 · … · 𝑔𝑚)−1 ⇒ 1𝔾 = 𝑔𝑚 · 1𝔾 ⇒ 𝑔𝑚 = 1𝔾

■

You can’t multiply some increased numbers and get back a 1.

Theorem If (𝔾, ⚬) has order 𝑚 > 1, then for every 𝑔 ∈ 𝔾 and for every 𝑖, 𝑔𝑖 = 𝑔[𝑖 mod 𝑚].

So you compute 𝑔 power the remainder. It’s quite easy to work in the group.

7.3. Euler function
The Euler function is Φ(𝑁) = |ℤ⋆

𝑁 |, which is the number of how many elements are prime.
Thus, 1 ≤ Φ(𝑁) < 𝑁 .
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• 𝑁  prime number 𝑝 ⇒ every 1 ≤ 𝑛 < 𝑝 is coprime with 𝑝.

‣ Φ(𝑁) = 𝑝 − 1.

• 𝑁  product of two primes 𝑝, 𝑞 ⇒ gcd(𝑎, 𝑁) ≠ 1 (𝑝|𝑎 ∨ 𝑞|𝑎).

‣ Φ(𝑁) = 𝑁 − 1 − (𝑝 − 1) − (𝑞 − 1) =
𝑝 · 𝑞 − 𝑝 − 𝑞 + 1 =
𝑝(𝑞 − 1) − 1(𝑞 − 1) =
(𝑝 − 1) · (𝑞 − 1)

7.4. Finite groups example
1. ℤ𝑁 = {0, …, 𝑁 − 1} is a group if the underlying operation is addition modulo 𝑁 , i.e. the

map matching (𝑎, 𝑏) with 𝑎 + 𝑏 mod 𝑁 . The identity is 0 and the inverse of 𝑛 ∈ ℤ𝑁  is 𝑁 −
𝑚. But we can use this set with multiplication modulo 𝑁  when we eliminate 0 because it
is not invertible and 𝑁  is prime: the latter guarantees that every 1 < 𝑛 < 𝑁  is invertible
modulo 𝑁 .

For ℤ𝑁  with composite 𝑁  there’s a way to make the set a group with respect to the
multiplication modulo 𝑁 , using a ℤ⋆

𝑁 ⊆ ℤ𝑁 , where ℤ⋆
𝑁 = {𝑛 ∈ ℤ𝑁 | gcd(𝑛, 𝑁) = 1}.

Both groups are abelian.

2. ℤ5 = {0, 1, 2, 3, 4} (ℤ5, +) where + is addition modulo 5.

e.g. 3 + 4 = 3 + 4 mod 5 = 2 4 + 1 = 4 + 1 mod 5 = 0.

3. ℤ5 = {0, 1, 2, 3, 4} (ℤ5, ·)

e.g. 3 · 2 = 3 · 2 mod 5 = 1 4 · 4 = 16 mod 5 = 1 1 · 3 = 3 mod 5 = 3.

But, 0 shouldn’t be considered in this group for this operation. So, if we use ℤ⋆
5 = ℤ5 \ {0}

we have Φ(5) = 4.

4. ℤ6 = {0, 1, 2, 3, 4, 5, 6} (ℤ6, ·)

e.g. 5 · 5 = 25 mod 6 = 1 1 · 1 = 1 can’t use 0, so ℤ6 is not a group.

ℤ⋆
6 = {1, 5}. So Φ(6) = 2.

7.5. Cardinality of ℤ⋆
𝑁

The Euler function is defined as Φ(𝑁) = |ℤ⋆
𝑁 |. Also, 1 ≤ Φ(𝑁) < 𝑁 .

Theorem Let 𝑁 > 1. For every 𝑒 ∈ ℕ, 𝑒 > 0, we define 𝑓𝑒 : ℤ⋆
𝑁 ↦ ℤ⋆

𝑁  assuming 𝑓𝑒(𝑥) =
𝑥𝑒 mod 𝑁  . If gcd(𝑒, Φ(𝑁)) = 1, then 𝑓𝑒 is a permutation. Moreover, if 𝑑 is the inverse of 𝑒
(modulo Φ(𝑁)), then 𝑓𝑑 is the inverse of 𝑓𝑒.

𝑒 is coprime with Φ(𝑁).

𝑓𝑒 is a bijective function, because you can invert it.

𝑓𝑒 is efficiently computable from 𝑥 if you know both 𝑒 and 𝑁 .

Given 𝑒 and Φ(𝑁) the inverse 𝑑 of 𝑒 modulo Φ(𝑁) is efficiently computable.

Given 𝑁  as product of two primes 𝑝, 𝑞, the value Φ(𝑁) is not easily computable.
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7.6. RSA assumption
The factorization issue becomes easy to compute if we know which prime numbers 𝑝, 𝑞 form 𝑁  or
if we know the inverse number 𝑑 of the number 𝑒 modulo Φ(𝑁), in other words gcd(𝑒, Φ(𝑛)) = 1.

As assumption we have that 𝖦𝖾𝗇𝖱𝖲𝖠 returns:

• 𝑁 = 𝑝 · 𝑞 with |𝑝| = |𝑞| = 𝑛.

• 𝑒 ∈ ℕ s.t. gcd(𝑒, Φ(𝑁)) = 1.

• 𝑑 ∈ ℕ s.t. 𝑒 · 𝑑 mod Φ(𝑁) = 1.

We can create an experiment which uses an attacker 𝐴.

𝖱𝖲𝖠𝖨𝗇𝗏𝐴, 𝖦𝖾𝗇𝖱𝖲𝖠(𝑛):
1 (𝑁, 𝑒, 𝑑) ← 𝖦𝖾𝗇𝖱𝖲𝖠(1𝑛)
2 𝑦 ← ℤ⋆

𝑁
3 𝑥 ← 𝐴(𝑁, 𝑒, 𝑦)
4 return 𝑥𝑒 mod 𝑁 ≟ 𝑦

𝖦𝖾𝗇𝖱𝖲𝖠(1𝑛):
1 (𝑁, 𝑝, 𝑞) ← 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌 (1𝑛)
2 𝑀 ← (𝑝 − 1)(𝑞 − 1)
3 𝑒 ← {1, …, 𝑀} # such that gcd(𝑒, 𝑀) = 1
4 𝑑 ← 𝑒−1 mod 𝑀
5 return (𝑁, 𝑒, 𝑑)

RSA is hard relatively to 𝖦𝖾𝗇𝖱𝖲𝖠

⇕

∀𝐴 PPT, ∃𝜀 ∈ 𝒩𝒢ℒ. Pr(𝖱𝖲𝖠𝖨𝗇𝗏𝐴, 𝖦𝖾𝗇𝖱𝖲𝖠(𝑛) = 1) = 𝜀(𝑛)

RSA assumption is stronger than factoring assumptions.

7.7. Cyclic groups
Given a finite multiplicative group (𝐺, ·), one of its elements 𝑔 ∈ 𝔾 and construct

⟨𝑔⟩ = {𝑔0, 𝑔1, …} ⊆ 𝔾

This group is said to be cyclic if ∃𝑔 ∈ 𝔾 with ⟨𝑔⟩ = 𝔾. Also, 𝑔 is said generator of 𝔾.

As previously proved, 𝑔𝑚 = 1𝔾 so we can write ⟨𝑔⟩ = {𝑔1, …, 𝑔𝑚}. This infinite sequence is
periodic; the sequence can’t be infinite because the finite hypothesis of 𝔾.

There could be a 𝑖 < 𝑚 such that 𝑔𝑖 = 1𝔾. With ⟨𝑔⟩ = {𝑔1, …, 𝑔𝑖} there would be 𝑖 elements:

if 1 ≤ 𝑘 < 𝑗 < 𝑖 then 𝑔𝑗 = 𝑔𝑘 ⇒ 𝑔𝑗

𝑔𝑘 = 1𝔾 ⇒ 𝑔𝑗−𝑘 = 1𝔾

The cardinality of ⟨𝑔⟩, or order of 𝑔 ∈ 𝔾, is the smallest 𝑖 ∈ ℕ such that 𝑔𝑖 = 1.

Lemma If 𝔾 has order 𝑚 and 𝑔 ∈ 𝔾 has order 𝑖, then 𝑖|𝑚.

Proof
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If this were not be possible, we’d have 𝑚 = 𝑖𝑘 + 𝑗 with 𝑗 < 𝑖. But then

𝑔𝑗 = 𝑔𝑗+𝑖𝑘−𝑖𝑘 = 𝑔𝑚−𝑖𝑘 = 𝑔𝑚(𝑔𝑖)−𝑘 = 1𝔾(1𝔾)−𝑘 = 1𝔾

■

Theorem If 𝔾 has prime order then 𝔾 is cyclic and every 𝑔 ∈ 𝔾 with 𝑔 ≠ 1𝔾 generates 𝔾.

7.8. Discrete logarithm
If 𝔾 is a cyclic multiplicative group, then there exist a “natural” biunivocal correspondence
between 𝔾 and ℤ|𝔾|.

Every ℎ ∈ 𝔾 can be matched with a unique 𝑥 ∈ ℤ|𝔾| that is the one such that 𝑔𝑥 = ℎ. Now, 𝑥
is the discrete log of ℎ with respect to 𝑔, which we write log𝑔 ℎ.

The computing of log𝑔 ℎ given a cyclic group 𝐺 which uses a generator 𝑔 for 𝔾 and a random
element ℎ is the discrete logarithm problem.

The routine 𝖦𝖾𝗇𝖢𝖦 with input 1𝑛 constructs a group 𝔾, of order 𝑞, with |𝑞| = 𝑛, and a generator
𝑔 ∈ 𝔾.

DLog𝐴, 𝖦𝖾𝗇𝖱𝖲𝖠(𝑛):
1 (𝔾, 𝑞, 𝑔) ← 𝖦𝖾𝗇𝖢𝖦(1𝑛)
2 ℎ ← 𝔾 # random value from the group
3 𝑥 ← 𝐴(𝔾, 𝑞, 𝑔, ℎ)
4 return 𝑔𝑥 ≟ 𝑅

This is valid iff ∀𝐴 PPT, ∃𝜀 ∈ 𝒩𝒢ℒ. Pr(DLog𝐴, 𝖦𝖾𝗇𝖱𝖲𝖠(𝑛) = 1) = 𝜀(𝑛).

7.9. Computational Diffie-Hellman (CDH) assumption
Given a cyclic group 𝔾 and a generator 𝑔 ∈ 𝔾, we define a function 𝐷𝐻𝑔 : 𝔾 × 𝔾 ↦ 𝔾 as
𝐷𝐻𝑔(ℎ, 𝑗) = 𝑔(log𝑔 ℎ)·(log𝑔 𝑗).

1. 𝐷𝐻𝑔(𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦 = (𝑔𝑥)𝑦 = (𝑔𝑦)𝑥

2. CDH wants to compute efficiently 𝐷𝐻𝑔.

3. CDH assumption holds if CDH is hard.

4. Each efficient algorithm for the discrete logarithm problem generates an efficient algorithm
for CDH.

7.10. Decisional Diffie-Hellman (DDH) asumption
The problem DDH consists in distinguishing 𝐷𝐻𝑔(ℎ, 𝑗) from an arbitrary element of the group
𝔾, given obviously ℎ and 𝑗.

Formally, DDH is hard iff ∀𝐴 PPT, ∃𝜀 ∈ 𝒩𝒢ℒ s.t.

| Pr(𝐴( 𝔾⎵
group

, 𝑞⎵
order

, 𝑔⎵
generator

, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1) − Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1)| ≤ 𝜀(𝑛)

𝑔𝑥, 𝑔𝑦 and 𝑔𝑧 are random values from the group.

(𝔾, 𝑞, 𝑔) is produced by 𝖦𝖾𝗇𝖢𝖦(1𝑛).
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7.11. Diffie-Hellman assumptions on specific groups
It should be noted that the use of groups with a prime number of elements is to be preferred,
this is because:

1. It’s trivial to test if an element is or is not a generator.

2. If 𝔾 is a group of prime order 𝑞 with |𝑞| = Θ(2𝑛) then Pr(𝐷𝐻𝑔(ℎ, 𝑗) = 𝑦) = 1
𝑞 + 𝜀(𝑛).

If we consider the groups ℤ⋆
𝑝 where 𝑝 is a prime.

1. An algorithm 𝖦𝖾𝗇𝖢𝖦 that generates groups of this type exists and it is efficient. The discrete
logarithm assumption applies to these groups.

2. DDH is not believed to be hard for these groups.
3. However, there is a different algorithm 𝖦𝖾𝗇𝖢𝖦 which returns a subset of ℤ⋆

𝑝 and for which
DDH is also believed to be hard.

7.12. From factoring to 1-way functions
Consider a function 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌 that takes as input at most 𝑝(𝑛) random bits of length 𝑛,
where 𝑝 is a polynomial.

We construct an algorithm that computes a function 𝑓𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌 as follows:
1. The input is a string 𝑥;
2. Compute an integer 𝑛 such that 𝑝(𝑛) ≤ |𝑥| ≤ 𝑝(𝑛 + 1);
3. Compute (𝑁, 𝑝, 𝑞) as the result of 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(1𝑛) using as random bits those in 𝑥, that

are enough.
4. Return 𝑁 .

We observe now how the following distributions are identical for each 𝑚 ∈ 𝑁 .
1. The result 𝑁  of 𝑓𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(𝑥) where 𝑥 ∈ {0, 1}𝑚 is randomly chosen.
2. The result 𝑁  of 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌(1𝑛) where 𝑝(𝑛) ≤ 𝑚 ≤ 𝑝(𝑛 + 1).

Theorem If factoring is hard relative to 𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌, then 𝑓𝖦𝖾𝗇𝖬𝗈𝖽𝗎𝗅𝗎𝗌 is a one-way function.
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8. Public-Key Encryption
We have two keys:
• encryption key, used by the sender.
• decryption key, user by the receiver.

Key distribution can be on public channels, each of the parties involved must keep secret a
single key, each new user creates a new public key.

8.1. Key Exchange
Set of rules Π that specifies how two parties 𝐴 and 𝐵 should exchange messages.

The security is formulated through an experiment, and this captures only passive adversaries.

The transcript of a protocol is the content of all the messages exchanged by the parties. It also
contains the key 𝑘.

𝖪𝖤𝑒𝑎𝑣
𝐴,Π(𝑛):

1 (transcript, 𝑘) ← Π(1𝑛)
2 𝑏 ← {0, 1}
3 if 𝑏 = 0 then
4 𝑘⋆ ← {0, 1}𝑛

5 else
6 𝑘⋆ ← 𝑘
7 𝑏⋆ ← 𝐴(transcript, 𝑘⋆)
8 return ¬(𝑏 ⊕ 𝑏⋆)

Π is secure iff for every 𝐴 PPT ∃𝜀 ∈ 𝒩𝒢ℒ s.t. Pr(𝖪𝖤𝑒𝑎𝑣
𝐴,Π(𝑛) = 1) = 1

2 + 𝜀(𝑛).

8.1.1. Diffie-Hellman protocol
It exploits the things of cyclic groups. Given the two parties we have:

𝐴:

(𝔾, 𝑞, 𝑔) ← 𝖦𝖾𝗇𝖢𝖦(1𝑛)
𝑥 ← ℤ𝑞

ℎ1 ← 𝑔𝑥

send (𝔾, 𝑞, 𝑔, ℎ1) to 𝐵

𝐵 (which does not know 𝑥):

𝑦 ← ℤ𝑞

ℎ2 ← 𝑔𝑦

send ℎ2 to 𝐴
return ℎ𝑦

1

𝐴:

return ℎ𝑥
2
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It’s like a partial kind of secrecy.

The exchange protocol like above is correct if 𝑘𝐵 = 𝑘𝐴. Here we have

𝑘𝐵 = ℎ𝑦
1 = (𝑔𝑥)𝑦 = 𝑔𝑥𝑦

𝑘𝐴 = ℎ𝑥
2 = (𝑔𝑦)𝑥 = 𝑔𝑥𝑦

Theorem If DDH holds with respect to 𝖦𝖾𝗇𝖢𝖦 then the DH key-exchange protocol is secure
against 𝖪𝖤𝑒𝑎𝑣.

It is related to discrete algorithm. The issue here is that 𝖪𝖤𝑒𝑎𝑣 does not avoid situations like
impersonification attacks or MitM attacks.

Proof

Let’s just start from the expression we want to show bounded by 1
2 + 𝜀(𝑛):

Pr(𝖪𝖤𝑒𝑎𝑣
𝐴,Π(𝑛) = 1) =

= Pr(𝖪𝖤𝑒𝑎𝑣
𝐴,Π(𝑛) = 1 | 𝑏 = 0) · Pr(𝑏 = 0) + Pr(𝖪𝖤𝑒𝑎𝑣

𝐴,Π(𝑛) = 1 | 𝑏 = 1) · Pr(𝑏 = 1)

= 1
2[Pr(𝖪𝖤𝑒𝑎𝑣

𝐴,Π(𝑛) = 1 | 𝑏 = 0) + Pr(𝖪𝖤𝑒𝑎𝑣
𝐴,Π(𝑛) = 1 | 𝑏 = 1)]

= 1
2 [Pr(𝐴(transcript, 𝑟) = 0) + Pr(𝐴(transcript, 𝑘) = 1)]

= 1
2 [Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 0) + Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1)]

= 1
2 [(1 − Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1)) + Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1)]

= 1
2 + 1

2 [Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1) − Pr(𝐴(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1)]

= 1
2 + 1

2𝜀(𝑛)

The right side of the expression is negligible thanks to the DDH assumption. i.e. A function 𝜀
which is a negligible function.

The adversary for the protocol and the adversary for DDH are the same.

■

8.2. Asymmetrical scheme
We use a pair of keys ⟨𝑝𝑘, 𝑠𝑘⟩ where 𝑝𝑘 ≠ 𝑠𝑘. The first of them is named “public key”, the
latter “secret key”.

Here, there’s not the problem about key sharing on private channel. Each user must manage
the secrecy of only one key.

But, how can you authenticate a public key? We have to be sure about the ownership of a key.

For a scheme Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) we have some edits:
• 𝖦𝖾𝗇 takes in input a string 1𝑛 and outputs a pair ⟨𝑝𝑘, 𝑠𝑘⟩ such that |𝑝𝑘|, |𝑠𝑘| ≥ 𝑛 and 𝑛 can

be inferred by one of them.
• 𝖤𝗇𝖼 takes in input a message 𝑚 and a public key 𝑝𝑘.
• 𝖣𝖾𝖼 can be probabilistic and takes in input a ciphertext 𝑐 and a secret key 𝑠𝑘.

For a correct scheme in a probabilistic sense, we have that there exist a negligible function 𝜀
such that for every pair ⟨𝑝𝑘, 𝑠𝑘⟩ generated by a 𝖦𝖾𝗇(1𝑛) and a 𝑛,

Pr(𝖣𝖾𝖼(𝑠𝑘, 𝖤𝗇𝖼(𝑝𝑘, 𝑚)) ≠ 𝑚)𝖤𝗇𝖼 ≤ 𝜀(𝑛)
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The adversary knows the public key, and this is a different way to see the 𝖯𝗎𝖻𝖪.

𝖯𝗎𝖻𝖪𝑒𝑎𝑣
𝐴,Π(𝑛):

1 (𝑝𝑘, 𝑠𝑘) ← 𝖦𝖾𝗇(1𝑛)
2 (𝑚0, 𝑚1) ← 𝐴(1𝑛, 𝑝𝑘)
3 if |𝑚0| ≠ |𝑚1| then
4 return 0
5 𝑏 ← {0, 1}
6 𝑐 ← 𝖤𝗇𝖼(𝑝𝑘, 𝑚𝑏)
7 𝑏⋆ ← 𝐴(𝑐)
8 return ¬(𝑏 ⊕ 𝑏⋆)

This above is about a passive attacker (eavesdropper). Security about passive attacks and CPA
are seen in the same way because an attacker 𝐴 is able to encrypt any message because they
can use the public key of the victim. Since a passive adversary has got access to 𝑝𝑘, it is also
considered active.

Theorem If Π is secure against passive attacks ⇒ Π is secure against CPA.

The theorem of Shannon about security is not used because it can be used only for symmetrical
key scheme.

Theorem There are no asymmetric ciphers that are secure in a perfect sense.

Theorem No public key scheme in which Enc is deterministic can be secure with respect to
𝖯𝗎𝖻𝖪𝑒𝑎𝑣.

8.2.1. Multiple encryptions
Let’s define a new experiment 𝖯𝗎𝖻𝖪𝑚𝑢𝑙𝑡 in which the adversary outputs not a pair of messages
(𝑚0, 𝑚1) but a pair of tuple of messages (𝑚0, 𝑚1) where 𝑚0 = (𝑚1

0, …, 𝑚𝑡
0), 𝑚1 = (𝑚1

1, …, 𝑚𝑡
1),

and |𝑚𝑗
0| = |𝑚𝑗

1|.

Π is said to be secure with respect to multiple encodings iff for every PPT 𝐴 there exist 𝜀 with

Pr(𝖯𝗎𝖻𝖪𝑚𝑢𝑙𝑡
𝐴,Π (𝑛) = 1) = 1

2
+ 𝜀(𝑛)

Theorem If Π is secure with respect to 𝖯𝗎𝖻𝖪𝑒𝑎𝑣, then it is secure with respect to 𝖯𝗎𝖻𝖪𝑚𝑢𝑙𝑡 .

8.2.2. Hybrid encryption
A public key scheme is less efficient than private key scheme, so we could combine them.

• Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) is public key scheme.
• Π′ = (𝖦𝖾𝗇′, 𝖤𝗇𝖼′, 𝖣𝖾𝖼′) is private key scheme.
• Π𝐻𝑦 is scheme in which the encryption is defined in Figure 18.

Figure 18: Hybrid encryption
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This is what it’s used in practice, such as into operating systems.

The key is what we expect from the public key.

𝖦𝖾𝗇𝐻𝑦(1𝑛):
1 return 𝖦𝖾𝗇(1𝑛)

𝖤𝗇𝖼𝐻𝑦(𝑝𝑘, 𝑚):
1 𝑘 ← {0, 1}𝑛

2 𝑐 ← 𝖤𝗇𝖼𝑝𝑘(𝑘)
3 𝑑 ← 𝖤𝗇𝖼′

𝑘(𝑚)
4 return (𝑐, 𝑑)

𝖣𝖾𝖼𝐻𝑦(𝑠𝑘, (𝑐, 𝑑)):
1 𝑘 ← 𝖣𝖾𝖼𝑠𝑘((𝑐, 𝑑))
2 𝑚 ← 𝖣𝖾𝖼′

𝑘(𝑑)
3 return 𝑚

Theorem If Π is CPA-secure and Π′ has indistinguishable encryptions, then Π𝐻𝑦 is secure.

The time you take to encrypt 𝑡 bits is TIME(𝑡) = 𝛼+𝛽𝑡
𝑡  where 𝛼 is fixed for the key and it can

be very large, 𝛽 is the time to encrypt each bit.

lim
𝑡→∞

𝛼 + 𝛽𝑡
𝑡

= 𝛽

As |𝑚| increases, the quantity |𝑐| stays constant, while there are private-key encryption schemes
such that |𝑑| = |𝑚| + 𝑛. Therefore, as |𝑚| increases, the length of (𝑐, 𝑑) is linear.

8.2.3. Textbook RSA
We define a scheme called Textbook RSA.

𝖦𝖾𝗇(1𝑛):
1 (𝑁, 𝑒, 𝑑) ← 𝖦𝖾𝗇𝖱𝖲𝖠(1𝑛)
2 return ((𝑁, 𝑒), (𝑁, 𝑑))

𝖤𝗇𝖼((𝑁, 𝑒), 𝑚):
1 𝑐 ← 𝑚𝑒 mod 𝑁
2 return c

𝖣𝖾𝖼((𝑁, 𝑑), 𝑐):
1 𝑚 ← 𝑐𝑑 mod 𝑁
2 return 𝑚

This is insecure, we do not have an Enc deterministic. There are a lot of attacks, just look at
Cyberchallenge notes.
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8.2.3.1. Secure version of RSA (Padded RSA)
A different scheme called Padded RSA is secure.

𝖦𝖾𝗇(1𝑛):
1 (𝑁, 𝑒, 𝑑) ← 𝖦𝖾𝗇𝖱𝖲𝖠(1𝑛)
2 return ((𝑁, 𝑒), (𝑁, 𝑑))

𝖤𝗇𝖼((𝑁, 𝑒), 𝑚):
1 𝑟 ← {0, 1}|𝑁|−𝓁(𝑛)−1

2 𝑐 ← (𝑟‖𝑚)𝑒 mod 𝑁
3 return c

𝖣𝖾𝖼((𝑁, 𝑑), 𝑐):
1 𝑚 ← LSB(𝑐𝑑 mod 𝑁, 𝓁(𝑛))
2 return 𝑚

𝓁(𝑛) is a function such that |𝑚| ≤ 𝓁(𝑛) ≤ 2𝑛 − 2. It should be sufficiently small, less than linear.

We do have something randomized in encryption with value 𝑟.

Theorem If the RSA Assumption holds with respect to 𝖦𝖾𝗇𝖱𝖲𝖠 and if 𝓁(𝑛) = 𝑂(log 𝑛), then
Padded RSA is secure with respect to passive attacks.

8.2.3.2. Elgamal
It is an encryption scheme based from the DDH assumption for passive attacks.

Fixed two 𝑚, 𝑐 ∈ 𝔾 of a finite group, the probability that a random element 𝑘 ∈ 𝔾 is such that
𝑚 · 𝑘 = 𝑐 is equal to 1

|𝔾| .

Pr(𝑚 · 𝑘 = 𝑐) = Pr(𝑘 = 𝑚 − 1 · 𝑐) = 1
|𝔾|

𝖦𝖾𝗇(1𝑛):
1 (𝔾, 𝑞, 𝑔) ← 𝖦𝖾𝗇𝖢𝖦(1𝑛)
2 𝑥 ← ℤ𝑞
3 𝑠𝑘 ← (𝔾, 𝑞, 𝑔, 𝑥)
4 𝑝𝑘 ← (𝔾, 𝑞, 𝑔, 𝑔𝑥)
5 return (𝑠𝑘, 𝑝𝑘)

𝖤𝗇𝖼((𝔾, 𝑞, 𝑔, ℎ), 𝑚):
1 𝑦 ← ℤ𝑞

2
return (𝑔𝑦, ℎ𝑦 · 𝑚⎵

ℎ=𝑔𝑥

ℎ𝑦=(𝑔𝑥)𝑦

ℎ𝑦·𝑚=𝑑

)

𝖣𝖾𝖼((𝔾, 𝑞, 𝑔, 𝑥), (𝑐, 𝑑)):
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1 return 𝑑
𝑐𝑥

1

We’re using the assumption that discrete algorithm calculation is hard.

The correctness of scheme is proved by

𝑑
𝑐𝑥
1

= ℎ𝑦 · 𝑚
𝑔𝑦𝑥 = (𝑔𝑥)𝑦 · 𝑚

𝑔𝑥𝑦 = 𝑚

• It is often used in practice, such as cryptocurrencies, also for Zero-Knowledge Proofs.
• In Fully-Homeomorphic Encryption Schemes you delegate the storage to the cloud which is

responsible to encrypt and decrypt files.
• In Post-Quantum Cryptography we use quantum computers.

Theorem If Assumption DDH holds with respect to 𝖦𝖾𝗇𝖢𝖦, then the Elgamal scheme is
secure.

Proof

Let us consider, just for the sake of proving this result, a variation Π̃ of the Elgamal encryption
scheme, in which Gen is kept like in Elgamal, while 𝖤𝗇𝖼 is replaced by the algorithm

𝖤𝗇𝖼((𝔾, 𝑞, 𝑔, ℎ, 𝑚), 𝑚):
1 𝑦 ← ℤ𝑞
2 𝑧 ← ℤ𝑞
3 return (𝑔𝑦, 𝑔𝑧 · 𝑚)

Although being completely useless in practice, Π̃ satisfies the following property:

Pr(𝖯𝗎𝖻𝖪𝑒𝑎𝑣
𝐴,Π̃(𝑛) = 1) = 1

2

Because the challenge ciphertext (the element 𝑐) contains no information allowing the adversary
to discriminate between 𝑚0 and 𝑚1 simply because 𝑚 is multiplied by 𝑦𝑧 and the first
component 𝑔𝑦 is independent from 𝑔𝑧.

• Now the real proof by reduction can start.

We build an adversary 𝐵 against DDH from an adversary 𝐴 against Elgamal in such a way
that if 𝐴 is successful, then 𝐵 is successful:

𝐵(𝔾, 𝑞, 𝑔, 𝑔𝑧, 𝑔𝑦, ℎ):
1 (𝑚0, 𝑚1) ← 𝐴(1|𝑞|, (𝔾, 𝑞, 𝑔, 𝑔𝑥))
2 𝑏 ← {0, 1}
3 𝑐 ← (𝑔𝑦, 𝑚𝑏 · ℎ)
4 𝑏⋆ ← 𝐴(𝑐)
5 return ¬(𝑏 ⊕ 𝑏⋆)

We know that

Pr(𝖯𝗎𝖻𝖪𝑒𝑎𝑣
𝐴,Π̃(𝑛) = 1) = Pr(𝐵(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1)
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Pr(𝖯𝗎𝖻𝖪𝑒𝑎𝑣
𝐴, Π⎵

Elgamal

(𝑛) = 1) = Pr(𝐵(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1)

If the ℎ of 𝐵 becomes 𝑔𝑧, it will be used on the calculation of 𝑐 at line 3.

The first one probability is 1
2  but the latter is far away to that value.

If 𝐴 breaks Π, then Pr(𝖯𝗎𝖻𝖪𝑒𝑎𝑣
𝐴,Π(𝑛) = 1) is in the form 1

2 + 𝜂(𝑛) where 𝜂 is not negligible. But,
since we know that Pr(𝖯𝗎𝖻𝖪𝑒𝑎𝑣

𝐴,Π̃(𝑛) = 1) = 1
2 , then we can conclude that

| Pr(𝐵(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1) − Pr(𝐵(𝔾, 𝑞, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) = 1)| = 𝜂(𝑛)

which is the thesis. 𝐵 is successful.

■
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9. The Symbolic Model
It’s an higher level of abstraction than what we’ve seen about binary strings. Also named
Dolev-Yao.

In the computational model we used cryptographic primitives and protocols that are modelled
using PPT algorithms, using a probability of success for an 𝐴 of a negligible function 𝜀. The
computational model has got some limits: first of all, probabilistic reasonings becomes difficult
for complex frameworks; also, for an increased number of participants it decreases the efficiency.
Examples of issues like those are cryptocurrencies and e-commerce.

9.1. Needham-Schroeder Protocol
It uses 𝐴, 𝐵 which are the participant IDs and nonces 𝑁𝐴, 𝑁𝐵

Figure 19: Needham-Schroeder Protocol

The encryption is denoted as {𝑀}𝑘: a message 𝑀  and a key 𝑘.

It is a symmetric key exchange algorithm that creates a session-key for two participants 𝐴, 𝐵,
named 𝐾𝐴𝐵.

The session key is also encrypted during the communication thanks to 𝐾𝐴𝑆 and 𝐾𝐵𝑆. So you’re
able to look the message only if you also know the key: this is called expression, we do not talk
about just binary strings.

There are some issues for this protocol that identifies it as non-secure, but they’re not about
the cryptographic primitives used. They’re at logical level of abstraction.

1. An attacker can hold a previous version of 𝐾𝐴𝑆 so to have a replay attack.
• 𝐵 generates a valid 𝑁𝐵 but the attacker can decrypt the produced message and produces

𝑁𝐵 − 1.
• The attacker impersonates 𝐴.

2. If we do not use 𝐵 as part of the step 2 (the response 𝑆 → 𝐴), an attacker could intercepts
the message at step 1 and edit the “receiver” as 𝐶.
• 𝐴 would not be able to recognize any impersonates.
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In the symbolic model we have some differences:

Computational Formal

Messages Binary strings Expressions

Adversaries Efficient Algorithms Arbitrary Processes

Attacks Non Negligible Probability
Event Possible Event

If you have a chance to break the scheme that is a real attack, we do not talk about probabilities.

9.2. Expressions
An expression used above is the {𝑁𝐴, 𝐵, 𝐾𝐴𝐵, {𝐾𝐴𝐵, 𝐴}𝐾𝐵𝑆

}𝐾𝐴𝑆
. We see nested components

into the main expression component. Saying that we can’t see whole the expression as a simple
string of bits.

For {𝐾𝐴𝐵, 𝐴} an adversary could be able to know the expression but it should also know the
𝐾𝐵𝑆 to be able to understand what it’s looking at.

It is possible to parameterise which cryptographic primitives are available.

A difference for computational models but common to all symbolic models is the simplicity:
• Protocols’ security can be proved without assumptions.
• Given a protocol, deciding whether an adversary exists is a problem that can also be faced

with automatic techniques.
• As a consequence, the symbolic model can form the basis for model-checking, semi-automated

theorem proving, logic programming.
• All this has led to the design of concrete tools such as ProVerif or Tamarin.

9.3. ProVerif
A tool which analyses a protocol. You can define your own cryptographic primitives in an
abstract level.

The output is {𝑌 , 𝑁,? }. 𝑌  means “the verification holds”; 𝑁  means “no”; ? means “who knows”.

free c: channel .
free s: bitstring [ private ].

query attacker (s).

process
out (c, s);
0

• channel is a predefined type
• 0 means EOF.
• bitstring is not a binary digit string, but it can be anything else.
• query checks if the attacker knows the parameter s.
• an output RESULT not attacker(s[]) is false. means the attacker knows 𝑠.

free c: channel .
free s: bitstring [ private ].
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free p: bitstring [ private ].
query attacker (s).

process
out (c, p);
0

• If we set p as output, we have RESULT not attacker(s[]) is true.

free c: channel .
free s: bitstring .
free p: bitstring [ private ].
query attacker (s).

process
out (c, p);
0

• s is not private, we have RESULT not attacker(s[]) is false.

9.3.1. A real example
type key .

fun encrypt (bitstring, key): bitstring .
fun decrypt (bitstring, key): bitstring .
equation forall x: bitstring, y: key; decrypt (encrypt (x, y), y) = x .
equation forall x: bitstring, y: key; encrypt (decrypt (x, y), y) = x .

free c: channel .
free k: key [ private ].
free s: bitstring [ private ].

query attacker (s).

let processA =
out (c, encrypt (s, k)).

let processB =
in (c, x: bitstring);
let n = decrypt (x, k) in
0.

process
(! processA) | (! processB)

• The only reason why key is not bitstring is an intuitive annotation (it is a string ofc).

• An adversary asks for equations.

• | stands for “parallel”.

• processA and processB is named macros or functions: they’re parameters in input.

• The only way to know s is to apply the first equation but key is private.

With an edit

let processB =
in (c, x : bitstring);
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let n = decrypt (x, k) in
out (c, k).

• processB is stupid because it returns the decrypted value. The attacker sees the key.

A bad event does not happen or whenever an event happen another one has happened previously.

The keyword new allows for the definition of local names, which are invisible from the outside.

9.4. Multiset rewriting
In the symbolic model key, message, nonce, cipher can be separated and not considered all
as strings.

• Different types (sort).

• A function symbol is a function which has sort as parameters (and that outputs a single
tuple).

enc : key × msg ↦ cipher

dec : key × cipher ↦ msg

• Predicates: names of properties of tuples of elements.

Knowledge : cipher

KeyPair : pubkey × privkey

• Terms are expressions built from variables and function symbols.

𝑘 : key, 𝑚 : msg ⊢ enc(𝑘, 𝑚) : cipher

• Facts are predicates applied to expressions with the right sort (type). They use something
that are supposed to be true.

𝑘 : key, 𝑚 : msg ⊢ Knowledge (enc(𝑘, 𝑚))

• State is a finite multiset of facts, a set in which each element can occur more than once.
Given 𝑛 (not necessarily distinct) facts 𝐴1, …, 𝐴𝑛, the

multiset which contains them is indicated simply as 𝐴1, …, 𝐴𝑛.

Knowledge (enc(𝑘, 𝑚)),Knowledge (𝑘)

• Signature is a set of sorts and a set of function symbols and predicates.

• Rules are the dynamic evolution of the underlying state of the form

𝐴1, …, 𝐴𝑛 → ∃𝑥1, …∃𝑥𝑚.𝐵1, …, 𝐵𝑘

where 𝑛, 𝑚, 𝑘 ≥ 0, while the 𝐴𝑖-s and 𝐵𝑗-s are facts.

Knowledge (enc(𝑘, 𝑚)),Knowledge (𝑘) → Knowledge (𝑚)

• A signature and a set of rules over it forms a theory.

• A trace is a sequence of multi fact.

9.4.1. Theory of FA
We now define:
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• Sorts: state, symb, string.

• Function symbols, with everything finite:

cons : symb × string → string

𝑎1, …, 𝑎𝑚 : symb

𝑞1, …, 𝑞𝑛 : state

nil : string

• Predicates:

CurrentState : state

InputLeft : string

• Rules:

CurrentState (𝑞𝑖), InputLeft (cons(𝑎𝑗, 𝑥)) → CurrentState (𝑞𝑘), InputLeft (𝑥)

𝛿(𝑞𝑖, 𝑎𝑗) = 𝑎𝑗 is the transaction function of the FA.

There’s no only one theory for every finite automata.

The ∃ quantifier does not exist: this would make the task analyser harder.

9.4.2. Turing Machine
In this case we need the ∃. Now, let’s add the sort cells and predicates

Content : cell × symb

Adjacency : cell × cell

if one cell is adjacent to another, it means the second is next to first, just like an order.

Adjacency (𝑥, 𝑐𝑒𝑜𝑡) → ∃𝑦.Adjacency (𝑥, 𝑦),Content (𝑦, blank),Adjacency (𝑦, 𝑐𝑒𝑜𝑡)

It is not modeling the computation but the growing of the model.

9.4.3. Safety problems
The problem of “bad” situations never happen is actually a safety problem.

Given a theory, a set of initial facts 𝑋 and set of bad facts 𝑌  (we do not want to be actual in
practice), a MSR safety problem determines whether there exist a trace leading from a fact in
𝑋 to a fact in 𝑌 , namely a trace in the form

𝑆1 → 𝑆2 → … → 𝑆𝑛

where 𝑆1 ∈ 𝑋 and 𝑆𝑛 ∈ 𝑌 .

A particular safety problem is an halting problem, so it is quite hard.

Theorem The MSR safety problem is undecidable.

9.4.4. Protocols as theories
Finite automata and Turing machines are sequential models of computation.
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For every agent 𝑋 and for every phase 𝑖 ∈ ℕ in the execution of the protocol, there is a predicate
𝑋𝑖 capturing the fact that 𝑋 is in phase 𝑖, and that it knows some data, seen as a parameter
to 𝑋𝑖.

The exchange of data between the parties is mediated by the network, and this is captured by
a predicate 𝑁𝑖, this way paving the way to the modeling of attackers.

Example

𝐴 → 𝐵 : 𝑁𝐴

𝐵 → 𝐴 : 𝑁𝐴, 𝑁𝐵

𝐴 → 𝐵 : 𝑁𝐵

we can model this model using a single sort 𝑛 which stands for nonce.

Predicates, that are some phases:

𝐴0 : 1 𝐴1 : 𝑛 𝐴2 : 𝑛 × 𝑛

• 𝐴0 is the first stance; 𝐴1 is it produces a nonce; 𝐴2 is the final case.

𝐵0 : 1 𝐵1 : 𝑛 × 𝑛 𝐵2 : 𝑛 × 𝑛

• 𝐵1 is the case when 𝐴 sends to it the nonce.

𝑁1 : 𝑛 𝑁2 : 𝑛 × 𝑛 𝑁3 : 𝑛

The rules are

𝐴0 → ∃𝑥.𝐴1(𝑥), 𝑁1𝑥

𝐵0, 𝑁1(𝑥) → ∃𝑦.𝐵1(𝑥, 𝑦), 𝑁2(𝑥, 𝑦)

𝐴1(𝑥), 𝑁2(𝑥, 𝑦) → 𝐴2(𝑥, 𝑦), 𝑁3(𝑦)

𝐵1(𝑥, 𝑦), 𝑁3(𝑦) → 𝐵2(𝑥, 𝑦)

9.4.5. Modeling the attacker
In the Dolev-Yao model an attacker can:

• Read any message, preventing it to reach its destination.
• Decompose a message into parts and remember them (including decrypting a ciphertext for

which it has obtained the key).
• Generate fresh data.
• Compose a new message from known data and send it to the network.

This can be modeled by endowing the theory with:
• A predicate 𝐷 capturing what the attacker has observed.
• A predicate 𝑀  modeling the intruder’s memory.
• A predicate 𝐶 which serves to model new messages the adversary has crafted, and which

could possibly be sent.
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It is convenient that the aforementioned (unary) predicates are on a sort 𝑚 of which 𝑛 is a
subsort, and that a binary function symbol ⟨·, ·⟩ on 𝑚 is available.

The rules are

𝑁1(𝑥) → 𝐷(𝑥)

𝑁2(𝑥, 𝑦) → 𝐷(⟨𝑥, 𝑦⟩)

𝐷(⟨𝑥, 𝑦⟩) → 𝐷(𝑥), 𝐷(𝑦) [this is decomposed]

𝐷(𝑥) → 𝑀(𝑥)

𝑀(𝑥) → 𝐶(𝑥), 𝑀(𝑥)

𝐶(𝑥) → 𝑁1(𝑥)

𝐶(𝑥), 𝐶(𝑦) → 𝐶(⟨𝑥, 𝑦⟩)

𝐶(⟨𝑥, 𝑦⟩) → 𝑁2(𝑥, 𝑦)

→ ∃𝑥.𝑀(𝑥) [it means you can create anything]

The memory is persistent, so it can be used to reconstruct the messages on the network.

There is a trace starting in the 𝐴0, 𝐵0 and ending in a state in which 𝐴 and 𝐵 concluded the
protocol without sharing the same data.

9.4.6. A toy protocol
𝐴0, 𝐵0 → 𝐴1(𝑛𝐴), 𝑁1(𝑛𝐴), 𝐵0

→ 𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑁2(𝑛𝐴, 𝑛𝐵)

→ 𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝐷(⟨𝑛𝐴, 𝑛𝐵⟩)

• in a pessimistic way to see the things, the attacker has access to the whole network.

→ 𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝐷(𝑛𝐴), 𝐷(𝑛𝐵)

→
2

𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵)

• the attacker wants to create a new nonce.

→ 𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶)

→
2

𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝐶(𝑛𝐴), 𝐶(𝑛𝐶)

→ 𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝐶(⟨𝑛𝐴, 𝑛𝐶⟩)

→ 𝐴1(𝑛𝐴), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝑁2(𝑛𝐴, 𝑛𝐶)

→ 𝐴2(𝑛𝐴, 𝑛𝐶), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝑁3(𝑛𝐶)

→ 𝐴2(𝑛𝐴, 𝑛𝐶), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝐷(𝑛𝐶)

→ 𝐴2(𝑛𝐴, 𝑛𝐶), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝐶(𝑛𝐵), 𝐷(𝑛𝐶)

→ 𝐴2(𝑛𝐴, 𝑛𝐶), 𝐵1(𝑛𝐴, 𝑛𝐵), 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝑁3(𝑛𝐵), 𝐷(𝑛𝐶)
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→ 𝐴2(𝑛𝐴, 𝑛𝐶), 𝐵2(𝑛𝐴, 𝑛𝐵)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
this is a final configuration in which

𝐴 and 𝐵
do not have the same view

, 𝑀(𝑛𝐴), 𝑀(𝑛𝐵), 𝑀(𝑛𝐶), 𝐷(𝑛𝐶)

9.5. Symbolic model through expressions
A trivial symbolic model starting with the set 𝔹 = {0, 1} of booleans and set 𝕂 of key symbols
(they’re not binary strings, they are atomic).

The expressions we’re considering are

𝑀, 𝑁 ⩴ 𝐾 | 𝑖 | ⟨𝑀, 𝑁⟩ | {𝑀}𝐾

where 𝑖 ∈ 𝔹 and 𝐾 ∈ 𝕂. If you know the encryption {𝑀}𝐾 you don’t know the component 𝑀.

An implication is expressed by 𝑀 ⊢ 𝑁 , that means 𝑀  implies 𝑁 .

𝑀 ⊢ 0

𝑀 ⊢ 1

𝑀 ⊢ 𝑀

𝑀 ⊢ (𝑁, 𝐿)
𝑀 ⊢ 𝐿𝑀 ⊢ 𝑁

𝑀 ⊢ 𝑁
𝑀 ⊢ ⟨𝑁, 𝐿⟩

𝑀 ⊢ 𝐿
𝑀 ⊢ ⟨𝑁, 𝐿⟩

a pair is different than {𝑁}𝐾 because you do not need to know 𝐾.

𝑀 ⊢ {𝑁}𝐾

𝑀 ⊢ 𝐾𝑀 ⊢ 𝑁

𝑀 ⊢ 𝑁
𝑀 ⊢ 𝐾𝑀 ⊢ {𝑁}𝐾

For instance, ({{𝐾1}𝐾2
}𝐾3

, 𝐾3) ⊢ 𝐾3.

9.5.1. Equivalances
If Ε is an expression set, {𝑀 | ∃𝑁 ∈ Ε.𝑁 ⊢ 𝑀} is what the adversary can compute from Ε.

At each step, the adversary may compute any expression among those in the set and use it to
construct an attack.

Two expressions are considered equivalent if they are indistinguishable with respect to an
adversary whose task is to “separate” them.

For example, (0, {0}𝐾1
) and (0, {1}𝐾2

) are equivalent because the second part of both messages
is the same, even if the message and the keys are different.
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9.5.2. Patterns
The way an adversary “sees” an expression is captured by the notion of pattern.

𝑃 , 𝑄 ⩴ 𝐾 | 𝑖 | ⟨𝑃 , 𝑄⟩ | {𝑃}𝐾 | □

The pattern to which an expression corresponds, depends on the set of keys 𝒯 available to the
the adversary. We can read those as “the view of a something is somethat”.

𝑝(𝐾, 𝒯) = 𝐾

𝑝(𝑖, 𝒯) = 𝑖

𝑝(⟨𝑀, 𝑁⟩, 𝒯) = ⟨𝑝(𝑀, 𝒯), 𝑝(𝑁, 𝒯)⟩

𝑝({𝑀}𝐾 , 𝒯) = {{𝑝(𝑀,𝒯)}𝐾 if 𝐾∈𝒯
□ otherwise

An adversary sees an expression 𝑀  as

pattern(𝑀) = 𝑝(𝑀, {𝐾 ∈ 𝕂 | 𝑀 ⊢ 𝐾})

Two expressions 𝑀  and 𝑁  are equivalent iff pattern(𝑀) = pattern(𝑁).

An equivalence is sait to be weak if

𝑀 ≅ 𝑁 ⟺ 𝑀 ≡ 𝑁𝜎

with 𝜎 bijetion on 𝕂.

For instance, we two keys 𝐾1 ≅ 𝐾2 they are different but should they be not equivalent? Not
really. Indeed, {0}𝐾 ≅ {𝐾}𝐾 but (𝐾, {0}𝐾) ≇ (𝐾, {1}𝐾). The things equivalent are causing
the renaming of the values, like the 𝛼 equivalence of the 𝜆 calculcus.

9.6. Relating formal and computational models
We want to define when two expressions are equivalent accoring the computational model. An
example using Π = (𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼) we need to define:
• Security parameter 𝑛.
• Every 𝑘 ∈ 𝕂 that occurs in 𝑀  is what we get from 𝖦𝖾𝗇(1𝑛).
• 0 and 1 are strings from 𝔹.
• ⟨𝑁, 𝐿⟩ in 𝑀  are binary strings.
• A ciphertext {𝑁}𝐾 in 𝑀  has got by the invoking of 𝖤𝗇𝖼.

The famility of distributions corresponding to an exepression is the semantic of the expression
parametrized on the used encryption scheme: ⟦𝑀⟧Π.

When two expression are equivalent according to the computational model?

Definition Two families of distributions 𝒟 = {𝐷𝑛}𝑛∈𝑁  and ℰ = {𝐸𝑛}𝑛∈𝑁  are called
computationally indistinguishable iff for each PPT adversary 𝐴 there exists a negligible function
𝜀 ∈ 𝒩𝒢ℒ such that

| Pr(𝐴(1𝑛, 𝐷𝑛) = 1) − Pr(𝐴(1𝑛, 𝐸𝑛) = 1)| ≤ 𝜀(𝑛)

and we write 𝒟 ∼ ℰ, so 𝒟 is indistinguishable computable to ℰ (said equivalent).

The expression above is similar to the expression seen for PRG.

An expression 𝑀  is said to be acyclic iff for every subexpression {𝑁}𝐾 of 𝑀 , the key 𝐾 does
not occur in 𝑁 .
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Theorem (Abadi&Rogaway)

If Π is secure (in CPA) and 𝑀, 𝑁  are acyclic, then 𝑀 ≅ 𝑁  implies ⟦𝑀⟧Π ∼ ⟦𝑁⟧Π.

So, they are computational secure.
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