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OUTLINE OF THE COURSE

1. Introduction on basic R programming.

2. Random variable generation.

3. Monte Carlo integration.

4. Monte Carlo optimization.
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1. Basic R programming

• We introduce the programming language R.

• Input and output, data structures, and basic programming

commands.

• The material is both crucial and unavoidably sketchy.
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INTRODUCTION

• This is a quick introduction to R.

• There are entire books devoted to R.

– R Reference Card.

– available at http://cran.r-project.org/doc/contrib/Short-

refcard.pdf.

• Take Heart!

– The syntax of R is simple and logical.

– The best, and in a sense the only, way to learn R is th-

rough trial-and-error.

• Embedded help commands help() and help.search().

– help.start() opens a Web browser linked to the local

manual pages.
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WHY R?

• There exist other languages, most (all?) of them faster

than R, like Matlab, and even free, like C or Python.

• The language combines a sufficiently high power (for an

interpreted language) with a very clear syntax both for sta-

tistical computation and graphics.

• R is a flexible language that is object-oriented and thus

allows the manipulation of complex data structures in a

condensed and efficient manner.

• Its graphical abilities are also remarkable.

• R offers the additional advantages of being a free and open-

source system.

– There is even an R newsletter, R-News.

– Numerous (free) Web-based tutorials and user’s ma-

nuals.

• It runs on all platforms: Mac, Windows, Linux and Unix.

• It is increasingly common to see people who develop new

methodology simultaneously producing an R package.
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GETTING STARTED

• Type demo() for some demos; demo(image) and demo(graphics).

• help() for on-line help, or help.start() for an HTML brow-

ser interface to help.

• Type q() to quit R.

• Additional packages can be loaded via the library command,

as in

> library(combinat) # combinatorics utilities

> library(datasets) # The R Datasets Package

– There exist hundreds of packages available on the Web.

> install.package("mcsm")

• A library call is required each time R is launched.
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R OBJECTS

• R distinguishes between several types of objects.

– scalar, vector, matrix, time series, data frames, func-

tions, or graphics.

– An R object is mostly characterized by a mode.

– The different modes are

∗ null (empty object),

∗ logical (TRUE or FALSE),

∗ numeric (such as 3, 0.14159, or 2+sqrt(3)),

∗ complex, (such as 3-2i or complex(1,4,-2)), and

∗ character (such as “Blue”, “binomial”, “male”, or

“y=a+bx”).

• The R function str applied to any R object will show its

structure.

• R operates on those types as a regular function would ope-

rate on a scalar.

• Avoid loops in favor of matrix mainpulations.
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THE vector CLASS

> a=c(5,5.6,1,4,-5) build the object a containing a numeric
vector of dimension 5 with elements
5, 5.6, 1, 4, -5.

> a[1] display the first element of a.

> b=a[2:4] build the numeric vector b of dimension
3 with elements 5.6, 1, 4.

> d=a[c(1,3,5)] build the numeric vector d of dimension
3 with elements 5, 1, -5.

> 2*a multiply each element of a by 2
and display the result.

> b%%3 provides each element of b modulo 3.

> e=3/d build the numeric vector e of
dimension 3 and elements 3/5, 3, -3/5.

> log(d*e) multiply the vectors d and e term by
term and transform each term into
its natural logarithm.

> sum(d) calculate the sum of d.

> length(d) display the length of d.
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MORE ON THE vector CLASS

> t(d) transpose d, the result is a row vector.

> t(d)*e elementwise product between two
vectors with identical lengths.

> t(d)%*%e matrix product between two vectors
with identical lengths.

> g=c(sqrt(2),log(10)) build the numeric vector g of dimension

2 and elements
√
2, log(10).

> e[d==5] build the subvector of e that contains
the components e[i] such that d[i]=5.

> a[-3] create the subvector of a that contains
all components of a but the third.

> is.vector(d) display the logical expression TRUE
if a vector and FALSE else.
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THE matrix, array, and factor CLASSES

• The matrix class provides the R representation of matrices.

• A typical entry is

> x=matrix(vec,nrow=n,ncol=p).

– Creates an n× p matrix whose elements are those of the

vector vec of the dimension np.

• Some manipulations on matrices.

– The standard matrix product is denoted by %*%,

– while ∗ represents the term-by-term product.

– diag gives the vector of the diagonal elements of a ma-

trix.

– crossprod replaces the product t(x)%*%y on either vectors

or matrices.

– crossprod(x,y) more efficient.

• apply is easy to use for functions operating on matrices by

row or column.
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Some matrix COMMANDS

> x1=matrix(1:20,nrow=5) build the numeric matrix x1 of
dimension 5× 4 with first row 1, 6,
11, 16.

> x2=matrix(1:20,nrow=5, build the numeric matrix x2 of
byrow=T) dimension 5× 4 with first row 1, 2,

3, 4.

> a=x1%*%t(x2) matrix product.

> c=x1*x2 term-by-term product between x1

and x2.

> dim(x1) display the dimensions of x1.

> b[,2] select the second column of b.

> b[c(3,4),] select the third and fourth rows of b.

> b[-2,] delete the second row of b.

> rbind(x1,x2) vertical merging of x1 and x2.

> cbind(x1,x2) horizontal merging of x1 and x2.

> apply(x1,1,sum) calculate the sum of each row of x1.

> as.matrix(1:10) turn the vector 1:10 into a
10× 1 matrix.
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The list and data.frame CLASSES

• A list is a collection of arbitrary objects known as its com-

ponents.

> li=list(num=1:5,y="color",a=T) create a list with three

arguments.

• The last class we briefly mention is the data frame.

– A list whose elements are possibly made of differing

modes and attributes.

– But have the same length.

> v1=sample(1:12,30,rep=T) simulate 30 independent uni-

form 1, 2, . . . , 12.

> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 inde-

pendent uniform {A, B, . . . , J}.

> v3=runif(30) simulate 30 independent uniform [0, 1].

> v4=rnorm(30) simulate 30 independent standard nor-

mals.

> xx=data.frame(v1,v2,v3,v4) create a data frame.
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PROBABILITY DISTRIBUTION IN R

• R, or the web, has about all probability distributions.

• Prefixes: p,d,q,r.

Distribution Core Parameters Default values
Beta beta shape1,shape2

Binomial binom size,prob
Cauchy cauchy location,scale 0,1
Chi-square chisq df
Exponential exp 1/mean 1
F f df1,df2
Gamma gamma shape,1/scale

Log-Normal lnorm mean,sd 0,1
Logistic logis location,scale 0,1
Normal norm mean,sd 0,1
Poisson pois lambda
Student t df

Uniform unif min,max 0,1
Weibull weibull shape
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BASIC STATISTICS: t-TEST

• Test on the mean.

> x=rnorm(25) #produces a N(0,1) sample of size 25

> t.test(x)

One Sample t-test

data: x

t = -0.8168, df = 24, p-value = 0.4220

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.4915103 0.2127705

sample estimates:

mean of x

-0.1393699

SOME OTHER STUFF

• Graphical facilities.

– Can do a lot; see plot and par.

• Writing new R functions.

– h=function(x)(sin(x)^2+cos(x)^3)^(3/2)

– We will do this a lot.
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• Input and output in R.

– write.table, read.table, scan.

• Don’t forget the mcsm package.



2. Random variable generation

• We present practical techniques that can produce random

variables.

• From both standard and nonstandard distributions.

• First: Transformation methods.

• Next: Indirect Methods - Accept-Reject.
15



INTRODUCTION

• Monte Carlo methods rely on

– The possibility of producing a supposedly endless flow

of random variables.

– For well-known or new distributions.

• Such a simulation is, in turn,

– Based on the production of uniform random variables on

the interval (0, 1).

• We are not concerned with the details of producing uniform

random variables.

• We assume the existence of such a sequence.
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USING THE R GENERATORS

R has a large number of functions that will generate the stan-

dard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a G(5/2,9/2) di-

stribution.

• It is therefore,

– Counter-productive.

– Inefficient.

– And even dangerous.

• To generate from those standard distributions.

• If it is built into R, use it.

• But....we will practice on these.

• The principles are essential to deal with distributions that

are not built into R.
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UNIFORM SIMULATION

• The uniform generator in R is the function runif.

• The only required entry is the number of values to be ge-

nerated.

• The other optional parameters are min and max, with R code

> runif(100, min=2, max=5)

will produce 100 random variables U(2,5).

UNIFORM SIMULATION: CHECKING THE GENERATOR

• A quick check on the properties of this uniform generator is

to

– Look at a histogram of the Xi’s.

– Plot the pairs (Xi, Xi+1).

– Look at the estimate autocorrelation function.

• Look at the R code

> Nsim=10^4 #number of random numbers
18



> x=runif(Nsim)

> x1=x[-Nsim] #vectors to plot

> x2=x[-1] #adjacent pairs

> par(mfrow=c(1,3))

> hist(x)

> plot(x1,x2)

> acf(x)

UNIFORM SIMULATION: PLOTS FROM THE GENERATOR

• Histogram (left), pairwise plot (center), and estimated au-

tocorrelation function (right) of a sequence of 10000 uni-

form random numbers generated by runif.



UNIFORM SIMULATION: SOME COMMENTS

• Remember: runif does not involve randomness per se.

• It is a deterministic sequence based on a random starting

point.

• The R function set.seed can produce the same sequence.

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(2)

> runif(5)

[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

• Setting the seed determines all the subsequent values.

19



THE INVERSE TRANSFORM

• The Probability Integral Transform

– Allows us to transform a uniform into any random va-

riable.

• For example, if X has density f and cdf F , then we have

the relation

F (x) =

∫ x

−∞
f(t)dt,

and we set U = F (X) and solve for X.

• Example 2.1.

– If X ∼ Exp(1), then F (x) = 1− e−x.

– Solving for x in u = 1− e−x gives x = − log(1− u).
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GENERATING EXPONENTIALS

> Nsim=10^4 #number of random variables

> U=runif(Nsim)

> X=-log(U) #transforms of uniforms

> Y=rexp(Nsim) #exponentials from R

> par(mfrow=c(1,2)) #plots

> hist(X,freq=F,main="Exp from Uniform")

> hist(Y,freq=F,main="Exp from R")
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• Histograms of exponential random variables: Inverse tran-

sform (right), R command rexp (left), Exp(1) density on

top.



GENERATING OTHER RANDOM VARIABLES FROM UNI-

FORMS

• This method is useful for other probability distributions.

– Ones obtained as a transformation of uniform random

variables.

• Logistic pdf: f(x) = 1
β

e−(x−µ)/β

[1+e−(x−µ)/β]2
, cdf F (x) = 1

1+e−(x−µ)/β .

• Cauchy pdf: f(x) = 1
πσ

1

1+(x−µ

σ )
2 , cdf F (x) = 1

2
+ 1

π
arctan

(

x−µ
σ

)

.
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GENERAL TRANSFORMATION METHODS

• When a density f is linked in a relatively simple way

– To another distribution easy to simulate.

– This relationship can be use to construct an algorithm

to simulate from f .

• If the Xi’s are i.i.d. Exp(1) random variables,

– three standard distributions can be derived as

Y = 2

ν
∑

j=1

Xj ∼ χ2
2ν, ν ∈ N

∗

Y = β

a
∑

j=1

Xj ∼ G(a, β), a ∈ N
∗

Y =

∑a
j=1Xj

∑a+b
j=1Xj

∼ Be(a, b), a, b ∈ N
∗

where N∗ = {1,2, . . .}.

23



GENERAL TRANSFORMATION METHODS - χ2
6 RANDOM

VARIABLES

• For example, to generate χ2
6 random variables, we could use

the R code

> U=runif(3*10^4)

> U=matrix(data=U,nrow=3) #matrix for sums

> X=-log(U) #uniform to exponential

> X=2* apply(X,2,sum) #sum up to get chi squares

• Not nearly as efficient as calling rchisq, as can be checked

by the R code

> system.time(test1());system.time(test2())

user system elapsed

0.104 0.000 0.107

user system elapsed

0.004 0.000 0.004

• test1 corresponds to the R code above.

• test2 corresponds to X=rchisq(10^4,df=6).
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GENERAL TRANSFORMATION METHODS - COMMENTS

• These transformations are quite simple and will be used in

our illustrations.

• However, there are limits to their usefulness:

– No odd degrees of freedom.

– No normals.

• For any specific distribution, efficient algorithms have been

developed.

• Thus, if R has a distribution built in, it is almost always

worth using.

25



GENERAL TRANSFORMATION METHODS - A NORMAL GE-

NERATOR

• Box-Muller algorithm - two normals from two uniforms.

• If U1 and U2 are iid U [0,1], the variables X1 and X2

X1 =
√

−2 log(U1) cos(2πU2), X2 =
√

−2 log(U1) sin(2πU2)

are iid N(0,1) by virtue of a change of variable argument.

• The Box-Muller algorithm is exact, not a crude CLT-based

approximation.

• Note that this is not the generator implemented in R.

– It uses the probability inverse transform.

– With a very accurate representation of the normal cdf.
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GENERAL TRANSFORMATION METHODS - MULTIVARIA-

TE NORMALS

• Can simulate a multivariate normal variable using univariate

normals.

– Cholesky decomposition of Σ = AA′.

– Y ∼ Np(0, I) ⇒ AY ∼ Np(0,Σ).

• There is an R package that replicates those steps, called

rmnorm.

– In the mnormt library.

– Can also calculate the probability of hypercubes with the

function sadmvn.

> sadmvn(low=c(1,2,3),upp=c(10,11,12),

+ mean=rep(0,3),var=B)

[1] 9.012408e-05

attr(,"error")

[1] 1.729111e-08

• B is a positive-definite matrix.

• This is quite useful since the analytic derivation of this

probability is almost always impossible.
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DISCRETE DISTRIBUTIONS

• To generate discrete random variables we have an “all-

purpose” algorithm.

• Based on the inverse transform principle.

• To generate X ∼ Pθ, where Pθ is supported by the integers,

– We can calculate the probabilities, once for all, assuming

we can store them

p0 = Pθ(X ≤ 0), p1 = Pθ(X ≤ 1), p2 = Pθ(X ≤ 2), . . . ,

– And then generate U ∼ U [0,1] and take

X = k if pk−1 < U < pk.
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DISCRETE DISTRIBUTIONS - BINOMIAL

• Example. To generate X ∼ Bin(10,0.3).

– The probability values are obtained by pbinom(k,10,0.3).

p0 = 0.028, p1 = 0.149, p2 = 0.382, . . . , p10 = 1

– First solution: writing your own function.

r.bin.dis<-function(n,x,p){

values<-rep(NA,n)

P<-cumsum(p)

for (i in 1:n){u<-runif(1)

j<-1

while (u > P[j]){j<-j+1}

values[i]<-x[j]}

values}

– Second solution: sample function.

x<-sample(x,n,replace=TRUE,p)
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DISCRETE DISTRIBUTIONS - COMMENTS

• Specific algorithms are usually more efficient.

• Improvement can come from a judicious choice of the pro-

babilities first computed.

• For example, if we want to generate from a Poisson with

λ = 100.

– The algorithm above is inefficient.

– We expect most of our observations to be in the interval

λ± 3
√
λ.

– For λ = 100 this interval is (70, 130).

– Thus, starting at 0 is quite wasteful.

• A first remedy is to “ignore” what is outside of a highly

likely interval.

– In the current example P (X < 70) + P (X > 130) =

0.00268.
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DISCRETE DISTRIBUTIONS - Poisson R Code

• R code that can be used to generate Poisson random varia-

bles for large values of lambda.

• The sequence t contains the integer values in the range

around the mean.

> Nsim=10^4; lambda=100

> spread=3*sqrt(lambda)

> t=round(seq(max(0,lambda-spread),lambda+spread,1))

> prob=ppois(t, lambda)

> X=rep(0,Nsim)

> for (i in 1:Nsim){

+ u=runif(1)

+ X[i]=t[1]+sum(prob<u)-1 }

• The last line of the program checks to see what interval

the uniform random variable fell in and assigns the correct

Poisson value to X.
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DISCRETE DISTRIBUTIONS - COMMENTS

• Another remedy is to start the cumulative probabilities at

the mode of the discrete distribution.

• Then explore neighboring values until the cumulative pro-

bability is almost 1.

• Specific algorithms exist for almost any distribution and are

often quite fast.

• So, if R has it, use it.

• But R does not handle every distribution that we will need.
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ACCEPT-REJECTION METHODS - INTRODUCTION

• There are many distributions where transform methods fail.

• For these cases, we must turn to indirect methods.

– We generate a candidate random variable.

– Only accept it subject to passing a test.

• This class of methods is extremely powerful.

– It will allow us to simulate from virtually any distribution.

• Accept-Reject Methods

– Only require the functional form of the density f of

interest.

– f : target, g: candidate.

• Where it is simpler to simulate random variables from g.
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ACCEPT-REJECTION ALGORITHM

• The only constraints we impose on this candidate density g.

– f and g have compatible supports (i.e., g(x) > 0 when

f(x) > 0).

– There is a constant M with f(x)/g(x) ≤ M for all x.

• X ∼ f can be simulated as follows.

– Generate Y ∼ g and, independently, generate U ∼ U [0,1].

– If U ≤ 1
M

f(Y )
g(Y )

, set X = Y .

– If the inequality is not satisfied, we then discard Y and

U and start again.

• Note that M = supx
f(x)
g(x)

.

• P (Accept) = 1
M
. Expected Waiting Time: M .
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ACCEPT-REJECTION ALGORITHM - R IMPLEMENTATION

• Succinctly, the Accept-Reject Algorithm is

Accept-Reject Method

1. Generate Y ∼ g, U ∼ U [0,1];

2. Accept X = Y if U ≤ f(Y )/Mg(Y );

3. Return to 1 otherwise.

• R implementation: If randg generates from g.

> u=runif(1)*M

> y=randg(1)

> while (u>f(y)/g(y))

{

u=runif(1)*M

y=randg(1)

}

• Produces a single generation y from f .
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ACCEPT-REJECTION ALGORITHM - NORMAL FROM DOU-

BLE EXPONENTIALS

• Candidate: Y ∼ 1
2
exp(−|y|).

• Target: X ∼ 1√
2π

exp(−x2/2).

1√
2π

exp(−y2/2)

1
2
exp(−|y|)

≤ 2√
2π exp(1/2)

Maximum at y = 1.

• Accept Y if U ≤ exp(−0.5Y 2 + |Y | − 0.5).

• Look at R code.
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ACCEPT-REJECTION ALGORITHM - THEORY

• Why does this method work?

• A straightforward probability calculation shows

P (Y ≤ x|Accept) = P

(

Y ≤ x|U ≤ f(Y )

Mg(Y )

)

= P (X ≤ x)

Simulating from g, the output of this algorithm is exactly

distributed from f .

• The Accept-Reject method is applicable in any dimension.

• As long as g is a density over the same space as f .

• Only need to know f/g up to a constant.

• Only need an upper bound on M .
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ACCEPT-REJECTION ALGORITHM - BETAS FROM UNI-

FORMS

• Generate X ∼ Beta(a, b).

• No direct method if a and b are not integers.

• Use a uniform candidate.

• For a = 2.7 and b = 6.3.
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• Acceptance Rate: 37%.
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ACCEPT-REJECTION ALGORITHM - BETAS FROM BETAS

• Generate X ∼ Beta(a, b).

• No direct method if a and b are not integers.

• Use a beta candidate.

• For a = 2.7 and b = 6.3, Y ∼ Beta(2,6).
∼
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• Acceptance Rate: 60%.
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ACCEPT-REJECTION ALGORITHM - BETAS FROM BETAS

- DETAILS

• Beta density ∝ xa(1− x)b.

• Can generate if a and b integers.

• If not, use candidate with a1 and b1 integers

ya(1− y)b

ya1(1− y)b1
maximized at y =

a− a1

a− a1 + b− b1
.

Need a1 < a and b1 < b.

• Efficiency increases as the candidate gets closer to the tar-

get.

• Look at R code.
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ACCEPT-REJECTION ALGORITHM - COMMENTS

Some key properties of the Accept-Reject algorithm:

1. Only the ratio f/M is needed.

• So the algorithm does not depend on the normalizing

constant.

2. The bound f ≤ Mg need not be tight.

• Accept-Reject is valid, but less efficient, if M is replaced

with a larger constant.

3. The probability of acceptance is 1/M .

• So M should be as small as possible for a given compu-

tational effort.
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3. Monte Carlo Integration

• We introduce the major concepts of Monte Carlo methods.

• The validity of Monte Carlo approximations relies on the

Law of Large Numbers.

• The versatility of the representation of an integral as an

expectation.
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MONTE CARLO INTEGRATION - INTRODUCTION

• We will be concerned with evaluating integrals of the form

∫

χ

h(x)f(x)dx.

– f is a density.

– We can produce an almost infinite number of random

variables from f .

• We apply probabilistic results.

– Law of Large Numbers.

– Central Limit Theorem.

• The Alternative - Deterministic Numerical Integration.

– R functions area and integrate.

– OK in low (one) dimensions.

– Usually needs some knowledge of the function.
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CLASSICAL MONTE CARLO INTEGRATION - THE MONTE

CARLO METHOD

• The generic problem: evaluate

Ef [h(X)] =

∫

χ

h(x)f(x)dx.

– X takes its values in χ.

• The Monte Carlo Method.

– Generate a sample (x1, . . . , xn) from the density f .

– Approximate the integral with

h̄n =
1

n

n
∑

j=1

h(xj).
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CLASSICAL MONTE CARLO INTEGRATION - VALIDATING

THE MONTE CARLO METHOD

• The convergence

h̄n =
1

n

n
∑

j=1

h(xj) → Ef [h(X)] =

∫

χ

h(x)f(x)dx.

is valid by the Strong Law of Large Numbers.

• When h2(X) has a finite expectation under f ,

h̄n − Ef[h(X)]
√
vn

→ N(0,1).

– Follows from the Central Limit Theorem.

– vn = 1
n2

∑n
j=1[h(xj)− h̄n]2.
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CLASSICAL MONTE CARLO INTEGRATION - A FIRST EXAM-

PLE

• Look at the function: h(x) = [cos(50x) + sin(20x)]2.

• Monitoring convergence.

• R code.

• The confidence band produced in this figure is not a 95%

confidence band in the classical sense. They are confidence

intervals were you to stop at a chosen number of iterations.
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CLASSICAL MONTE CARLO INTEGRATION - COMMENTS

• The evaluation of the Monte Carlo error is a bonus.

• It assumes that vn is a proper estimate of the variance of h̄n.

• If vn does not converge, converges too slowly, the Central

Limit Theorem may not apply.

ANOTHER EXAMPLE

• Normal probability

Φ̂(t) =
1

n

n
∑

i=1

1xi≤t → Φ(t) =

∫ t

−∞

1√
2π

e−y2/2dy.

– The exact variance Φ(t)[1−Φ(t)]/n.

– Conservative: V ar ≈ 1/4n.

– For a precision of four decimals.

∗ Want 2×
√

1/4n ≤ 10−4 simulations.

∗ Take n = (104)2 = 108.

• This method breaks down for tail probabilities.
47



IMPORTANCE SAMPLING - INTRODUCTION

• Importance sampling is based on an alternative formulation

of the Strong Law of Large Numbers.

Ef [h(X)] =

∫

χ

h(x)
f(x)

g(x)
g(x)dx = Eg

[

h(X)f(X)

g(X)

]

– f is the target density.

– g is the candidate density.

– Sound familiar? Just like Accept-Reject.

• So

1

n

n
∑

i=1

f(xi)

g(xi)
h(xi) → Ef [h(X)]

• As long as

– V ar(h(X)f(X)/g(X)) < ∞.

– support of (h× f) contains the support of g.
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REVISITING NORMAL TAIL PROBABILITIES

• Z ∼ N(0,1) and we are interested in the probability P (Z >

4.5).

• pnorm(-4.5,log=T)

[1] -12.59242

• Simulating Z(i) ∼ N(0,1) only produces a hit once in about

3 million of iterations!

– Very rare event for the normal.

– Not-so-rare for a distribution sitting out there!

• Take g = Exp(1) truncated at 4.5:

g(y) =
e−y

∫∞
4.5

e−xdx
= e−(y−4.5).

• The IS estimator is

1

n

n
∑

i=1

f(Y (i))

g(Y (i))
=

1

n

n
∑

i=1

e−Y 2
i /2 + Yi − 4.5√

2π
.

• R code.

49



IMPORTANCE SAMPLING - SELECTION OF THE IMPOR-

TANCE FUNCTION

Some choices of g are better than others.

While 1
n

∑n
i=1 h(xi)

f(xi)
g(xi)

→ Ef[h(X)] almost surely, its variance is

finite only when

Eg

[

h2(X)
f2(X)

g2(X)

]

= Ef

[

h2(X)
f(X)

g(X)

]

=

∫

χ

h2(x)
f(x)

g(x)
dx < ∞

• Instrumental distributions with tails lighter than those of f

(those with unbounded ratios f/g) are not appropriate for

importance sampling.

• If the ratio f/g is unbounded, the weights f(xi)/g(xi) will

vary widely, giving too much importance to a few values xi.
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SELECTION OF THE IMPORTANCE FUNCTION - EXAM-

PLE

• Target: Cauchy density f(x) = 1
π

1
1+x2.

• Importance function: standard Normal density

g(x) =
1√
2π

exp
[

−x2/2
]

.

• The ratio f(x)/g(x) ∝ exp(x2/2)/(1 + x2) is explosive.

• R code

x=rnorm(10^6)

wein=decauchy(x)/dnorm(x)

boxplot(wein/sum(wein))

plot(cumsum(wein*(x>2)*(x<6))/cumsum(wein),type="l")

abline(a=pcauchy(6)-pcauchy(2),b=0,col="sienna")
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IMPORTANCE SAMPLING - OPTIMAL IMPORTANCE FUNC-

TION

Distributions g with thicker tails than f ensure that the ratio f/g

does not cause the divergence of Ef

[

h2(X)f(X)
g(X)

]

.

Sufficient conditions

(a) f(x)/g(x) < M , ∀x ∈ χ and V arf [h(X)] < ∞;

(b) χ is compact, f(x) < F and g(x) > ε,∀x ∈ χ.

These conditions are quite restrictive.

Among the distributions g leading to finite variances for the

estimator 1
n

∑n
i=1 h(xi)

f(xi)
g(xi)

, the choice of g that minimizes the

variance of the estimator is

g∗(x) =
|h(x)|f(x)

∫

χ
|h(z)|f(z)dz

From a practical point of view, this suggests looking for distri-

butions g for which |h|f/g is almost constant with finite variance.
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IMPORTANCE SAMPLING - EXAMPLE

Compute the integral
∫∞
0

e−x3

dx through importance sampling

from:

• Standard normal density.

• Exponential density function exp(1).

Evaluate the variability of each estimator using a single sequence

of length 1000.

int1<-function(n){

x=rnorm(n)

fn=rep(0,n)

fn[x>0]=exp(-x[x>0]^3)/dnorm(x[x>0])

fn}

int2<-function(n){

x=rexp(n)

fn=exp(-x^3)/dexp(x)

fn}

Nsim=10^4

i1=int1(Nsim)

i2=int2(Nsim)

mean(i1)

mean(i2)

v1=(mean(i1^2)-mean(i1)^2)/Nsim

v2=(mean(i2^2)-mean(i2)^2)/Nsim
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4. Monte Carlo Optimization

• Two uses of computer-generated random variables to solve

optimization problems.

• The first use is to produce stochastic search technique.

– To reach the maximum (or minimum) of a function.

– Avoid being trapped in local maxima (or minima).

– Are sufficiently attracted by the global maximum (or

minimum).

• The second use of simulation is to approximate the function

to be optimized.
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MONTE CARLO OPTIMIZATION - INTRODUCTION

• Optimization problems can mostly be seen as one of two

kinds:

– Find the extrema of a function h(θ) over a domain Θ.

– Find the solution(s) to an implicit equation g(θ) = 0

over a domain Θ.

• The problems are exchangeable.

– The second one is a minimization problem for a function

like h(θ) = g2(θ).

– While the first one is equivalent to solving ∂h(θ)/∂θ = 0.

• We only focus on the maximization problem.
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MONTE CARLO OPTIMIZATION - DETERMINISTIC OR STO-

CHASTIC

• Similar to integration, optimization can be deterministic or

stochastic.

• Deterministic: performance dependent on properties of the

function (such as convexity, boundedness, and smoothness).

• Stochastic (simulation).

– Properties of h play a lesser role in simulation-based

approaches.

• Therefore, if h is complex or Θ is irregular, chose the sto-

chastic approach.
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MONTE CARLO OPTIMIZATION - NUMERICAL OPTIMIZA-

TION

• R has several embedded functions to solve optimization pro-

blems.

– The simplest one is optimize (one dimensional).

Example: Maximizing a Cauchy likelihood C(θ,1).

• When maximizing the likelihood of a Cauchy C(θ,1) sample,

ℓ(θ|x1, . . . , xn) =
1

π

n
∏

i=1

1

1+ (xi − θ)2
.

• The sequence of maxima (MLEs) → θ∗ = 0 when n → ∞.

• But the journey is not a smooth one . . .
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MONTE CARLO OPTIMIZATION - CAUCHY LIKELIHOOD

• MLEs (left) at each sample size, n = 1,500, and plot of

final likelihood (right).

– Why are the MLEs so wiggly?

– The likelihood is not as well-behaved as it seems.
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MONTE CARLO OPTIMIZATION - CAUCHY LIKELIHOOD

• The likelihood ℓ(θ|x1, . . . , xn) =
∏n

i=1
1

1+(xi−θ)2
is like a poly-

nomial of degree 2n.

• The derivative has 2n zeros.

• Hard to see if n = 500.

• Here is n = 5.

• R code.
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MONTE CARLO OPTIMIZATION - NEWTON-RAPHSON

• Similarly, nlm is a generic R function using the Newton-

Raphson method.

• Based on the recurrence relation

θi+1 = θi −
[

∂2h

∂θ∂θT
(θi)

]−1
∂h

∂θ
(θi).

where the matrix of the second derivatives is called the

Hessian

– This method is perfect when h is quadratic.

– But may also deteriorate when h is highly nonlinear.

– It also obviously depends on the starting point θ0 when

h has several minima.
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STOCHASTIC SEARCH - A BASIC SOLUTION

• A natural if rudimentary way of using simulation to find

maxθ h(θ).

– Simulate points over Θ according to an arbitrary distri-

bution f positive on Θ.

– Until a high value of h(θ) is observed.

– Recall h(x) = [cos(50x) + sin(20x)]2.

– Max=3.8325.

– Histogram of 1000 runs.
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STOCHASTIC SEARCH - STOCHASTIC GRADIENT

METHODS

• Generating direct simulations from the target can be diffi-

cult.

• Different stochastic approach to maximization.

– Explore the surface in a local manner.

– Can use θj+1 = θj + ǫj.

– A Markov Chain.

– The random component ǫj can be arbitrary.

• Can also use features of the function: Newton-Raphson

Variation.

θj+1 = θj + αj∇h(θj), αj > 0.

– Where ∇h(θj) is the gradient.

– αj the step size.
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STOCHASTIC GRADIENT METHODS

• In difficult problems.

– The gradient sequence will most likely get stuck in a

local extremum of h.

• Stochastic Variation.

∇h(θj) ≈ h(θj + βjςj)− h(θj − βjςj)

2βj
ςj =

∇h(θj, βjςj)

2βj
ςj.

– βj is a second decreasing sequence.

– ςj is uniform on the unit sphere ||ς|| = 1.

• We then use

θj+1 = θj +
αj

2βj
∇h(θj, βjςj)ςj.
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SIMULATED ANNEALING - INTRODUCTION

• His name is borrowed from Metallurgy.

– A metal manufactured by a slow decrease of temperature

(annealing).

– Is stronger than a metal manufactured by a fast decrease

of temperature.

• The fundamental idea of simulated annealing methods.

– A change of scale, or temperature.

– Allows for faster moves on the surface of the function h

to maximize.

– Rescaling partially avoids the trapping attraction of local

maxima.

• As T decreases toward 0, the values simulated from this di-

stribution become concentrated in a narrower and narrower

neighborhood of the local maxima of h.
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METROPOLIS ALGORITHM/ SIMULATED ANNEALING

• Simulation method proposed by Metropolis et al. (1953).

• Update from θt to θt+1 is based on Metropolis-Hasting algo-

rithm step.

• ς is generated from a symmetric density g.

• The new value of θt+1 is generated as

θt+1 =

{

θt + ς with probability ρ = exp(∇h/T) ∧ 1
θt with probability 1− ρ

– ∆h = h(θt + ς)− h(θt).

– If h(ς) ≥ h(θt), θt + ς is accepted.

– If h(θt + ς) < h(θt), ς may still be accepted.

– This allows escape from local maxima.
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SIMULATED ANNEALING - METROPOLIS ALGORITHM COM-

MENTS

• Simulated annealing typically modifies the temperature T at

each iteration.

• It has the form:

1. Simulate ς from an instrumental distribution with density

g(ς).

2. Accept θi+1 = θi + ς with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.

• All positive moves accepted.

• As T ↓ 0.

– Harder to accept downward moves.

– No big downward moves.

• Not a Markov Chain - difficult to analyze.
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