Computational Statistics

Saverio Ranciati

Department of Statistical Sciences, University of Bologna. Via Belle Arti, 41 - 40126 Bologna, Italy.

E-mail: saverio.ranciati2@unibo.it

OUTLINE OF THE COURSE

- 1. Introduction on basic R programming.
- 2. Random variable generation.
- 3. Monte Carlo integration.
- 4. Monte Carlo optimization.

REFERENCES

Notes and slides (available virtuale.unibo.it) (these notes were kindly provided by Prof. Silvia Bianconcini)

C. Robert and G. Casella (2010). *Introducing Monte Carlo Methods* with R. New York: Springer-Verlag.

EXAM

Written exam

1. Basic R programming

- We introduce the programming language R.
- Input and output, data structures, and basic programming commands.
- The material is both crucial and unavoidably sketchy.

INTRODUCTION

- This is a quick introduction to R.
- There are entire books devoted to R.
 - R Reference Card.
 - available at http://cran.r-project.org/doc/contrib/Shortrefcard.pdf.
- Take Heart!
 - The syntax of R is simple and logical.
 - The best, and in a sense the only, way to learn R is through trial-and-error.
- Embedded help commands help() and help.search().
 - help.start() opens a Web browser linked to the local manual pages.

WHY R?

- There exist other languages, most (all?) of them faster than R, like Matlab, and even free, like C or Python.
- The language combines a sufficiently high power (for an interpreted language) with a very clear syntax both for statistical computation and graphics.
- R is a flexible language that is *object-oriented* and thus allows the manipulation of complex data structures in a condensed and efficient manner.
- Its graphical abilities are also remarkable.
- R offers the additional advantages of being a free and opensource system.
 - There is even an R newsletter, R-News.
 - Numerous (free) Web-based tutorials and user's manuals.
- It runs on all platforms: Mac, Windows, Linux and Unix.
- It is increasingly common to see people who develop new methodology simultaneously producing an R package.

GETTING STARTED

- Type demo() for some demos; demo(image) and demo(graphics).
- help() for on-line help, or help.start() for an HTML browser interface to help.
- Type q() to quit R.
- Additional packages can be loaded via the library command, as in
 - > library(combinat) # combinatorics utilities
 - > library(datasets) # The R Datasets Package
 - There exist hundreds of packages available on the Web.
 > install.package("mcsm")
- A library call is required each time R is launched.

R OBJECTS

- R distinguishes between several types of *objects*.
 - scalar, vector, matrix, time series, data frames, functions, or graphics.
 - An R object is mostly characterized by a *mode*.
 - The different modes are
 - * null (empty object),
 - * logical (TRUE or FALSE),
 - * numeric (such as 3, 0.14159, or 2+sqrt(3)),
 - * complex, (such as 3-2i or complex(1,4,-2)), and
 - * character (such as "Blue", "binomial", "male", or "y=a+bx").
- The R function str applied to any R object will show its structure.
- R operates on those types as a regular function would operate on a scalar.
- Avoid loops in favor of matrix mainpulations.

THE vector CLASS

>	a=c(5,5.6,1,4,-5)	build the object a containing a numeric vector of dimension 5 with elements 5, 5.6, 1, 4, -5.
>	a[1]	display the first element of a.
>	b=a[2:4]	build the numeric vector ъ of dimension 3 with elements 5.6, 1, 4.
>	d=a[c(1,3,5)]	build the numeric vector d of dimension 3 with elements 5, 1, -5.
>	2*a	multiply each element of a by 2 and display the result.
>	b%%3	provides each element of b modulo 3.
>	e=3/d	build the numeric vector e of dimension 3 and elements $3/5$, 3, $-3/5$.
>	log(d*e)	multiply the vectors d and e term by term and transform each term into its natural logarithm.
>	sum(d)	calculate the sum of d.
>	length(d)	display the length of d.

MORE ON THE vector CLASS

> t(d)	transpose d, the result is a row vector.
> t(d)*e	elementwise product between two vectors with identical lengths.
> t(d)%*%e	matrix product between two vectors with identical lengths.
<pre>> g=c(sqrt(2),log(10))</pre>	build the numeric vector g of dimension 2 and elements $\sqrt{2}$, log(10).
> e[d==5]	build the subvector of e that contains the components e[i] such that d[i]=5.
> a[-3]	create the subvector of a that contains all components of a but the third.
> is.vector(d)	display the logical expression TRUE if a vector and FALSE else.

THE matrix, array, and factor CLASSES

- The matrix class provides the R representation of matrices.
- A typical entry is
 - > x=matrix(vec,nrow=n,ncol=p).
 - Creates an $n \times p$ matrix whose elements are those of the vector vec of the dimension np.
- Some manipulations on matrices.
 - The standard matrix product is denoted by %*%,
 - while * represents the term-by-term product.
 - diag gives the vector of the diagonal elements of a matrix.
 - crossprod replaces the product t(x)%*%y on either vectors or matrices.
 - crossprod(x,y) more efficient.
- apply is easy to use for functions operating on matrices by row or column.

Some matrix COMMANDS

<pre>> x1=matrix(1:20,nrow=5)</pre>	build the numeric matrix $x1$ of dimension 5×4 with first row 1, 6, 11, 16.
<pre>> x2=matrix(1:20,nrow=5, byrow=T)</pre>	build the numeric matrix x^2 of dimension 5×4 with first row 1, 2, 3, 4.
> a=x1%*%t(x2)	matrix product.
> c=x1*x2	term-by-term product between $x1$ and $x2$.
> dim(x1)	display the dimensions of $x1$.
> b[,2]	select the second column of b.
> b[c(3,4),]	select the third and fourth rows of b.
> b[-2,]	delete the second row of b.
<pre>> rbind(x1,x2)</pre>	vertical merging of $x1$ and $x2$.
> cbind(x1,x2)	horizontal merging of $x1$ and $x2$.
<pre>> apply(x1,1,sum)</pre>	calculate the sum of each row of $x1$.
> as.matrix(1:10)	turn the vector 1:10 into a 10×1 matrix.

The list and data.frame CLASSES

• A list is a collection of arbitrary objects known as its *components*.

> li=list(num=1:5,y="color",a=T) create a list with three arguments.

- The last class we briefly mention is the data frame.
 - A list whose elements are possibly made of differing modes and attributes.
 - But have the same length.

> v1=sample(1:12,30,rep=T) simulate 30 independent uniform 1, 2, . . . , 12.

> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 independent uniform {A, B, ..., J}.

> v3=runif(30) simulate 30 independent uniform [0, 1].

> v4=rnorm(30) simulate 30 independent standard normals.

> xx=data.frame(v1,v2,v3,v4) create a data frame.

PROBABILITY DISTRIBUTION IN R

• R, or the web, has about all probability distributions.

• Prefixes: p,d,q,r.

Distribution	Core	Parameters	Default values
Beta	beta	shape1,shape2	
Binomial	binom	size,prob	
Cauchy	cauchy	location, scale	0,1
Chi-square	chisq	df	
Exponential	exp	1/mean	1
F	f	df1,df2	
Gamma	gamma	shape,1/scale	
Log-Normal	lnorm	mean,sd	0,1
Logistic	logis	location, scale	0,1
Normal	norm	mean,sd	0,1
Poisson	pois	lambda	
Student	t	df	
Uniform	unif	min,max	0,1
Weibull	weibull	shape	

BASIC STATISTICS: *t*-TEST

• Test on the mean.

```
> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)
```

One Sample t-test

data: x t = -0.8168, df = 24, p-value = 0.4220 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -0.4915103 0.2127705 sample estimates: mean of x -0.1393699

SOME OTHER STUFF

- Graphical facilities.
 - Can do a lot; see plot and par.
- Writing new R functions.
 - h=function(x)($\sin(x)^2 + \cos(x)^3$)(3/2)
 - We will do this a lot.

- Input and output in R.
 - write.table, read.table, scan.
- Don't forget the mcsm package.

2. Random variable generation

- We present practical techniques that can produce random variables.
- From both standard and nonstandard distributions.
- First: Transformation methods.
- Next: Indirect Methods Accept-Reject.

INTRODUCTION

- Monte Carlo methods rely on
 - The possibility of producing a supposedly endless flow of random variables.
 - For well-known or new distributions.
- Such a simulation is, in turn,
 - Based on the production of uniform random variables on the interval (0, 1).
- We are not concerned with the details of producing uniform random variables.
- We assume the existence of such a sequence.

USING THE R GENERATORS

R has a large number of functions that will generate the standard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a G(5/2, 9/2) distribution.

- It is therefore,
 - Counter-productive.
 - Inefficient.
 - And even dangerous.
- To generate from those standard distributions.
- If it is built into R, use it.
- But....we will practice on these.
- The principles are essential to deal with distributions that are not built into R.

UNIFORM SIMULATION

- The uniform generator in R is the function runif.
- The only required entry is the number of values to be generated.
- The other optional parameters are min and max, with R code

> runif(100, min=2, max=5)

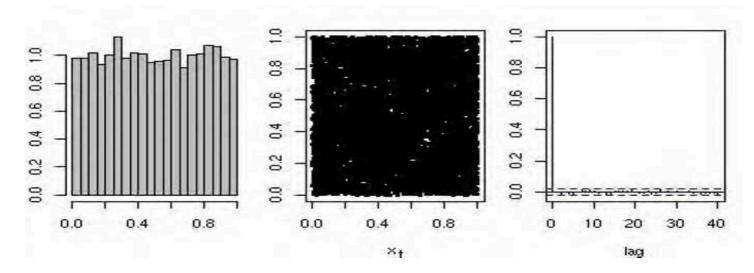
will produce 100 random variables U(2,5).

UNIFORM SIMULATION: CHECKING THE GENERATOR

- A quick check on the properties of this uniform generator is to
 - Look at a histogram of the X_i 's.
 - Plot the pairs (X_i, X_{i+1}) .
 - Look at the estimate autocorrelation function.
- Look at the R code
 - > Nsim=10⁴ #number of random numbers

- > x=runif(Nsim)
- > x1=x[-Nsim] #vectors to plot
- > x2=x[-1] #adjacent pairs
- > par(mfrow=c(1,3))
- > hist(x)
- > plot(x1,x2)
- > acf(x)

UNIFORM SIMULATION: PLOTS FROM THE GENERATOR



 Histogram (*left*), pairwise plot (*center*), and estimated autocorrelation function (*right*) of a sequence of 10000 uniform random numbers generated by runif.

UNIFORM SIMULATION: SOME COMMENTS

- Remember: runif does not involve randomness per se.
- It is a deterministic sequence based on a random starting point.
- The R function set.seed can produce the same sequence.

```
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)
> runif(5)
[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481
```

• Setting the seed determines all the subsequent values.

THE INVERSE TRANSFORM

- The Probability Integral Transform
 - Allows us to transform a uniform into any random variable.
- For example, if X has density f and cdf F, then we have the relation

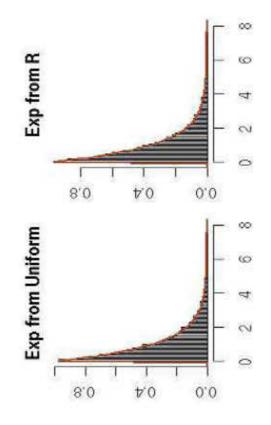
$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

and we set U = F(X) and solve for X.

- Example 2.1.
 - If $X \sim Exp(1)$, then $F(x) = 1 e^{-x}$.
 - Solving for x in $u = 1 e^{-x}$ gives $x = -\log(1 u)$.

GENERATING EXPONENTIALS

- > Nsim=10⁴ #number of random variables
- > U=runif(Nsim)
- > X=-log(U) #transforms of uniforms
- > Y=rexp(Nsim) #exponentials from R
- > par(mfrow=c(1,2)) #plots
- > hist(X,freq=F,main="Exp from Uniform")
- > hist(Y,freq=F,main="Exp from R")



 Histograms of exponential random variables: Inverse transform (*right*), R command rexp (*left*), Exp(1) density on top.

GENERATING OTHER RANDOM VARIABLES FROM UNI-FORMS

- This method is useful for other probability distributions.
 - Ones obtained as a transformation of uniform random variables.

• Logistic pdf:
$$f(x) = \frac{1}{\beta} \frac{e^{-(x-\mu)/\beta}}{[1+e^{-(x-\mu)/\beta}]^2}$$
, cdf $F(x) = \frac{1}{1+e^{-(x-\mu)/\beta}}$.

• Cauchy pdf:
$$f(x) = \frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x-\mu}{\sigma}\right)^2}$$
, cdf $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\sigma}\right)$.

GENERAL TRANSFORMATION METHODS

- When a density f is linked in a relatively simple way
 - To another distribution easy to simulate.
 - This relationship can be use to construct an algorithm to simulate from f.
- If the X_i 's are i.i.d. Exp(1) random variables,
 - three standard distributions can be derived as

$$Y = 2\sum_{j=1}^{\nu} X_j \sim \chi_{2\nu}^2, \quad \nu \in \mathbb{N}^*$$
$$Y = \beta \sum_{j=1}^{a} X_j \sim G(a, \beta), \quad a \in \mathbb{N}^*$$
$$Y = \frac{\sum_{j=1}^{a} X_j}{\sum_{j=1}^{a+b} X_j} \sim Be(a, b), \quad a, b \in \mathbb{N}^*$$

where $\mathbb{N}^*=\{1,2,\ldots\}.$

GENERAL TRANSFORMATION METHODS - χ_6^2 RANDOM VARIABLES

- For example, to generate χ_6^2 random variables, we could use the R code
 - > U=runif(3*10^4)
 - > U=matrix(data=U,nrow=3) #matrix for sums
 - > X=-log(U) #uniform to exponential
 - > X=2* apply(X,2,sum) #sum up to get chi squares
- Not nearly as efficient as calling rchisq, as can be checked by the R code

> system.time(test1());system.time(test2())
user system elapsed
0.104 0.000 0.107
user system elapsed
0.004 0.000 0.004

- test1 corresponds to the R code above.
- test2 corresponds to X=rchisq(10⁴,df=6).

GENERAL TRANSFORMATION METHODS - COMMENTS

- These transformations are quite simple and will be used in our illustrations.
- However, there are limits to their usefulness:
 - No odd degrees of freedom.
 - No normals.

- For any specific distribution, efficient algorithms have been developed.
- Thus, if R has a distribution built in, it is almost always worth using.

GENERAL TRANSFORMATION METHODS - A NORMAL GE-NERATOR

- Box-Muller algorithm two normals from two uniforms.
- If U_1 and U_2 are iid U[0,1], the variables X_1 and X_2

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2), \quad X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$$

are iid N(0,1) by virtue of a change of variable argument.

- The Box-Muller algorithm is exact, not a crude CLT-based approximation.
- Note that this is not the generator implemented in R.
 - It uses the probability inverse transform.
 - With a very accurate representation of the normal cdf.

GENERAL TRANSFORMATION METHODS - MULTIVARIA-TE NORMALS

- Can simulate a multivariate normal variable using univariate normals.
 - Cholesky decomposition of $\Sigma = AA'$.

$$- \mathbf{Y} \sim N_p(\mathbf{0}, \mathbf{I}) \Rightarrow \mathbf{A}\mathbf{Y} \sim N_p(\mathbf{0}, \mathbf{\Sigma}).$$

- There is an R package that replicates those steps, called rmnorm.
 - In the mnormt library.
 - Can also calculate the probability of hypercubes with the function sadmvn. > sadmvn(low=c(1,2,3),upp=c(10,11,12), + mean=rep(0,3),var=B) [1] 9.012408e-05 attr(,"error") [1] 1.729111e-08
- \mathbf{B} is a positive-definite matrix.
- This is quite useful since the analytic derivation of this probability is almost always impossible.

DISCRETE DISTRIBUTIONS

- To generate discrete random variables we have an "allpurpose" algorithm.
- Based on the inverse transform principle.
- To generate $X \sim P_{\theta}$, where P_{θ} is supported by the integers,
 - We can calculate the probabilities, once for all, assuming we can store them

$$p_0 = P_{\theta}(X \le 0), p_1 = P_{\theta}(X \le 1), p_2 = P_{\theta}(X \le 2), \dots,$$

- And then generate $U \sim U[0, 1]$ and take

$$X = k \quad \text{if} \quad p_{k-1} < U < p_k.$$

DISCRETE DISTRIBUTIONS - BINOMIAL

• Example. To generate $X \sim Bin(10, 0.3)$.

- The probability values are obtained by pbinom(k,10,0.3).

$$p_0 = 0.028, p_1 = 0.149, p_2 = 0.382, \dots, p_{10} = 1$$

```
- First solution: writing your own function.
r.bin.dis<-function(n,x,p){
values<-rep(NA,n)
P<-cumsum(p)
for (i in 1:n){u<-runif(1)
j<-1
while (u > P[j]){j<-j+1}
values[i]<-x[j]}
values}
```

Second solution: sample function. x<-sample(x,n,replace=TRUE,p)</p>

DISCRETE DISTRIBUTIONS - COMMENTS

- Specific algorithms are usually more efficient.
- Improvement can come from a judicious choice of the probabilities first computed.
- For example, if we want to generate from a Poisson with $\lambda = 100$.
 - The algorithm above is inefficient.
 - We expect most of our observations to be in the interval $\lambda \pm 3\sqrt{\lambda}$.
 - For $\lambda = 100$ this interval is (70, 130).
 - Thus, starting at 0 is quite wasteful.
- A first remedy is to "ignore" what is outside of a highly likely interval.
 - In the current example P(X < 70) + P(X > 130) = 0.00268.

DISCRETE DISTRIBUTIONS - Poisson R Code

- R code that can be used to generate Poisson random variables for large values of lambda.
- The sequence t contains the integer values in the range around the mean.

```
> Nsim=10^4; lambda=100
```

- > spread=3*sqrt(lambda)
- > t=round(seq(max(0,lambda-spread),lambda+spread,1))

```
> prob=ppois(t, lambda)
```

- > X=rep(0,Nsim)
- > for (i in 1:Nsim){

```
+ u=runif(1)
```

```
+ X[i]=t[1]+sum(prob<u)-1 }
```

• The last line of the program checks to see what interval the uniform random variable fell in and assigns the correct Poisson value to X.

DISCRETE DISTRIBUTIONS - COMMENTS

- Another remedy is to start the cumulative probabilities at the mode of the discrete distribution.
- Then explore neighboring values until the cumulative probability is almost 1.
- Specific algorithms exist for almost any distribution and are often quite fast.
- So, if R has it, use it.
- But R does not handle every distribution that we will need.

ACCEPT-REJECTION METHODS - INTRODUCTION

- There are many distributions where transform methods fail.
- For these cases, we must turn to indirect methods.
 - We generate a candidate random variable.
 - Only accept it subject to passing a test.
- This class of methods is extremely powerful.
 - It will allow us to simulate from virtually any distribution.
- Accept-Reject Methods
 - Only require the functional form of the density f of interest.
 - f: target, g: candidate.
- Where it is simpler to simulate random variables from g.

ACCEPT-REJECTION ALGORITHM

- The only constraints we impose on this candidate density g.
 - f and g have compatible supports (*i.e.*, g(x) > 0 when f(x) > 0).
 - There is a constant M with $f(x)/g(x) \leq M$ for all x.
- $X \sim f$ can be simulated as follows.
 - Generate $Y \sim g$ and, independently, generate $U \sim U[0, 1]$.

- If
$$U \leq \frac{1}{M} \frac{f(Y)}{g(Y)}$$
, set $X = Y$.

- If the inequality is not satisfied, we then discard Y and U and start again.
- Note that $M = \sup_x \frac{f(x)}{g(x)}$.
- $P(Accept) = \frac{1}{M}$. Expected Waiting Time: M.

ACCEPT-REJECTION ALGORITHM - R IMPLEMENTATION

• Succinctly, the Accept-Reject Algorithm is

Accept-Reject Method

- 1. Generate $Y \sim g, U \sim U[0, 1];$
- 2. Accept X = Y if $U \leq f(Y)/Mg(Y)$;
- 3. Return to 1 otherwise.
- R implementation: If randg generates from g.

```
> u=runif(1)*M
> y=randg(1)
> while (u>f(y)/g(y))
{
u=runif(1)*M
y=randg(1)
}
```

• Produces a single generation y from f.

ACCEPT-REJECTION ALGORITHM - NORMAL FROM DOU-BLE EXPONENTIALS

• Candidate:
$$Y \sim \frac{1}{2} \exp(-|y|)$$
.

• Target:
$$X \sim \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$
.

$$\frac{\frac{1}{\sqrt{2\pi}}\exp(-y^2/2)}{\frac{1}{2}\exp(-|y|)} \le \frac{2}{\sqrt{2\pi}\exp(1/2)}$$

Maximum at y = 1.

- Accept Y if $U \le \exp(-0.5Y^2 + |Y| 0.5)$.
- Look at R code.

ACCEPT-REJECTION ALGORITHM - THEORY

- Why does this method work?
- A straightforward probability calculation shows

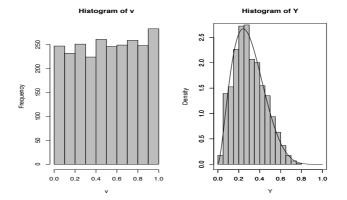
$$P(Y \le x | Accept) = P\left(Y \le x | U \le \frac{f(Y)}{Mg(Y)}\right) = P(X \le x)$$

Simulating from g, the output of this algorithm is exactly distributed from f.

- The Accept-Reject method is applicable in any dimension.
- As long as g is a density over the same space as f.
- Only need to know f/g up to a constant.
- Only need an upper bound on M.

ACCEPT-REJECTION ALGORITHM - BETAS FROM UNI-FORMS

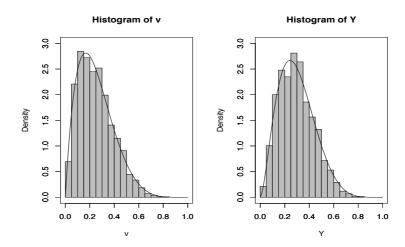
- Generate $X \sim Beta(a, b)$.
- No direct method if *a* and *b* are not integers.
- Use a uniform candidate.
- For a = 2.7 and b = 6.3.



• Acceptance Rate: 37%.

ACCEPT-REJECTION ALGORITHM - BETAS FROM BETAS

- Generate $X \sim Beta(a, b)$.
- No direct method if *a* and *b* are not integers.
- Use a beta candidate.
- For a = 2.7 and b = 6.3, $Y \sim Beta(2,6)$.



• Acceptance Rate: 60%.

ACCEPT-REJECTION ALGORITHM - BETAS FROM BETAS - DETAILS

- Beta density $\propto x^a(1-x)^b$.
- Can generate if *a* and *b* integers.
- If not, use candidate with a_1 and b_1 integers

$$\frac{y^a(1-y)^b}{y^{a_1}(1-y)^{b_1}} \quad \text{maximized at} \quad y = \frac{a-a_1}{a-a_1+b-b_1}$$

Need
$$a_1 < a$$
 and $b_1 < b$.

- Efficiency increases as the candidate gets closer to the target.
- Look at R code.

ACCEPT-REJECTION ALGORITHM - COMMENTS

Some key properties of the Accept-Reject algorithm:

- 1. Only the ratio f/M is needed.
 - So the algorithm does not depend on the normalizing constant.
- 2. The bound $f \leq Mg$ need not be tight.
 - Accept-Reject is valid, but less efficient, if *M* is replaced with a larger constant.
- 3. The probability of acceptance is 1/M.
 - So *M* should be as small as possible for a given computational effort.

3. Monte Carlo Integration

- We introduce the major concepts of Monte Carlo methods.
- The validity of Monte Carlo approximations relies on the Law of Large Numbers.
- The versatility of the representation of an integral as an expectation.

MONTE CARLO INTEGRATION - INTRODUCTION

• We will be concerned with evaluating integrals of the form

 $\int_{\gamma} h(x) f(x) dx.$

- f is a density.
- We can produce an almost infinite number of random variables from f.
- We apply probabilistic results.
 - Law of Large Numbers.
 - Central Limit Theorem.
- The Alternative Deterministic Numerical Integration.
 - R functions area and integrate.
 - OK in low (one) dimensions.
 - Usually needs some knowledge of the function.

CLASSICAL MONTE CARLO INTEGRATION - THE MONTE CARLO METHOD

• The generic problem: evaluate

$$\mathbb{E}_f[h(X)] = \int_{\chi} h(x) f(x) dx.$$

- X takes its values in χ .
- The Monte Carlo Method.
 - Generate a sample (x_1, \ldots, x_n) from the density f.
 - Approximate the integral with

$$\bar{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j).$$

CLASSICAL MONTE CARLO INTEGRATION - VALIDATING THE MONTE CARLO METHOD

• The convergence

$$\bar{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) \to \mathbb{E}_f[h(X)] = \int_{\chi} h(x) f(x) dx.$$

is valid by the Strong Law of Large Numbers.

• When $h^2(X)$ has a finite expectation under f,

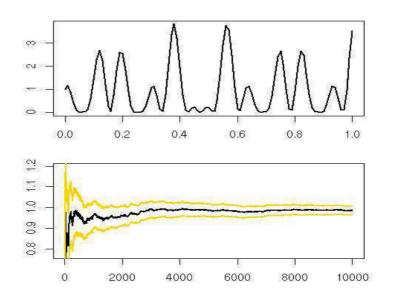
$$\frac{\overline{h}_n - \mathbb{E}_f[h(X)]}{\sqrt{v_n}} \to N(0, 1).$$

– Follows from the Central Limit Theorem.

$$- v_n = \frac{1}{n^2} \sum_{j=1}^n [h(x_j) - \bar{h}_n]^2.$$

CLASSICAL MONTE CARLO INTEGRATION - A FIRST EXAM-PLE

• Look at the function: $h(x) = [\cos(50x) + \sin(20x)]^2$.



- Monitoring convergence.
- R code.
- The confidence band produced in this figure is not a 95% confidence band in the classical sense. They are confidence intervals were you to stop at a chosen number of iterations.
 46

CLASSICAL MONTE CARLO INTEGRATION - COMMENTS

- The evaluation of the Monte Carlo error is a bonus.
- It assumes that v_n is a proper estimate of the variance of \overline{h}_n .
- If v_n does not converge, converges too slowly, the Central Limit Theorem may not apply.

ANOTHER EXAMPLE

• Normal probability

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{x_i \le t} \to \Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

- The exact variance $\Phi(t)[1 \Phi(t)]/n$.
- Conservative: $Var \approx 1/4n$.
- For a precision of four decimals.
 - * Want $2 \times \sqrt{1/4n} \le 10^{-4}$ simulations.
 - * Take $n = (10^4)^2 = 10^8$.
- This method breaks down for tail probabilities.

IMPORTANCE SAMPLING - INTRODUCTION

• Importance sampling is based on an alternative formulation of the Strong Law of Large Numbers.

$$\mathbb{E}_f[h(X)] = \int_{\chi} h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g\left[\frac{h(X)f(X)}{g(X)}\right]$$

- f is the target density.
- g is the candidate density.
- Sound familiar? Just like Accept-Reject.

• So

$$\frac{1}{n}\sum_{i=1}^{n}\frac{f(x_i)}{g(x_i)}h(x_i) \to \mathbb{E}_f[h(X)]$$

As long as

- $Var(h(X)f(X)/g(X)) < \infty.$
- support of $(h \times f)$ contains the support of g.

REVISITING NORMAL TAIL PROBABILITIES

- $Z \sim N(0,1)$ and we are interested in the probability P(Z > 4.5).
- pnorm(-4.5,log=T)

[1] -12.59242

- Simulating Z⁽ⁱ⁾ ~ N(0,1) only produces a hit once in about 3 million of iterations!
 - Very rare event for the normal.
 - Not-so-rare for a distribution sitting out there!
- Take g = Exp(1) truncated at 4.5:

$$g(y) = \frac{e^{-y}}{\int_{4.5}^{\infty} e^{-x} dx} = e^{-(y-4.5)}.$$

• The IS estimator is

$$\frac{1}{n}\sum_{i=1}^{n}\frac{f(Y^{(i)})}{g(Y^{(i)})} = \frac{1}{n}\sum_{i=1}^{n}\frac{e^{-Y_i^2/2} + Y_i - 4.5}{\sqrt{2\pi}}.$$

R code.

IMPORTANCE SAMPLING - SELECTION OF THE IMPOR-TANCE FUNCTION

Some choices of g are better than others.

While $\frac{1}{n} \sum_{i=1}^{n} h(x_i) \frac{f(x_i)}{g(x_i)} \to \mathbb{E}_f[h(X)]$ almost surely, its variance is finite only when

$$\mathbb{E}_g\left[h^2(X)\frac{f^2(X)}{g^2(X)}\right] = \mathbb{E}_f\left[h^2(X)\frac{f(X)}{g(X)}\right] = \int_{\chi} h^2(x)\frac{f(x)}{g(x)}dx < \infty$$

- Instrumental distributions with tails lighter than those of f (those with unbounded ratios f/g) are not appropriate for importance sampling.
- If the ratio f/g is unbounded, the weights $f(x_i)/g(x_i)$ will vary widely, giving too much importance to a few values x_i .

SELECTION OF THE IMPORTANCE FUNCTION - EXAM-PLE

• Target: Cauchy density
$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$
.

• Importance function: standard Normal density

$$g(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-x^2/2\right].$$

- The ratio $f(x)/g(x) \propto \exp(x^2/2)/(1+x^2)$ is explosive.
- R code

```
x=rnorm(10^6)
wein=decauchy(x)/dnorm(x)
boxplot(wein/sum(wein))
plot(cumsum(wein*(x>2)*(x<6))/cumsum(wein),type="l")
abline(a=pcauchy(6)-pcauchy(2),b=0,col="sienna")
```

IMPORTANCE SAMPLING - OPTIMAL IMPORTANCE FUNC-TION

Distributions g with thicker tails than f ensure that the ratio f/g does not cause the divergence of $\mathbb{E}_f \left[h^2(X) \frac{f(X)}{g(X)}\right]$.

Sufficient conditions

- (a) f(x)/g(x) < M, $\forall x \in \chi$ and $Var_f[h(X)] < \infty$;
- (b) χ is compact, f(x) < F and $g(x) > \varepsilon, \forall x \in \chi$.

These conditions are quite restrictive.

Among the distributions g leading to finite variances for the estimator $\frac{1}{n}\sum_{i=1}^{n}h(x_i)\frac{f(x_i)}{g(x_i)}$, the choice of g that minimizes the variance of the estimator is

$$g^*(x) = \frac{|h(x)|f(x)|}{\int_{\chi} |h(z)|f(z)dz|}$$

From a practical point of view, this suggests looking for distributions g for which |h|f/g is almost constant with finite variance.

IMPORTANCE SAMPLING - EXAMPLE

Compute the integral $\int_0^\infty e^{-x^3} dx$ through importance sampling from:

- Standard normal density.
- Exponential density function exp(1).

Evaluate the variability of each estimator using a single sequence of length 1000.

```
int1<-function(n){</pre>
x=rnorm(n)
fn=rep(0,n)
fn[x>0]=exp(-x[x>0]^3)/dnorm(x[x>0])
fn}
int2<-function(n){</pre>
x=rexp(n)
fn=exp(-x^3)/dexp(x)
fn}
Nsim=10^{4}
i1=int1(Nsim)
i2=int2(Nsim)
mean(i1)
mean(i2)
v1=(mean(i1<sup>2</sup>)-mean(i1)<sup>2</sup>)/Nsim
v2=(mean(i2<sup>2</sup>)-mean(i2)<sup>2</sup>)/Nsim
```

4. Monte Carlo Optimization

- Two uses of computer-generated random variables to solve optimization problems.
- The first use is to produce stochastic search technique.
 - To reach the maximum (or minimum) of a function.
 - Avoid being trapped in local maxima (or minima).
 - Are sufficiently attracted by the global maximum (or minimum).
- The second use of simulation is to approximate the function to be optimized.

MONTE CARLO OPTIMIZATION - INTRODUCTION

- Optimization problems can mostly be seen as one of two kinds:
 - Find the extrema of a function $h(\theta)$ over a domain Θ .
 - Find the solution(s) to an implicit equation $g(\theta) = 0$ over a domain Θ .
- The problems are exchangeable.
 - The second one is a minimization problem for a function like $h(\theta) = g^2(\theta)$.
 - While the first one is equivalent to solving $\partial h(\theta) / \partial \theta = 0$.
- We only focus on the maximization problem.

MONTE CARLO OPTIMIZATION - DETERMINISTIC OR STO-CHASTIC

- Similar to integration, optimization can be deterministic or stochastic.
- **Deterministic**: performance dependent on properties of the function (such as convexity, boundedness, and smoothness).
- Stochastic (simulation).
 - Properties of h play a lesser role in simulation-based approaches.
- Therefore, if h is complex or Θ is irregular, chose the stochastic approach.

MONTE CARLO OPTIMIZATION - NUMERICAL OPTIMIZA-TION

- R has several embedded functions to solve optimization problems.
 - The simplest one is optimize (one dimensional).

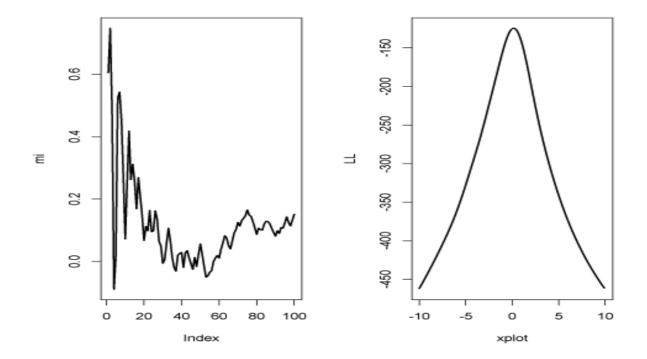
Example: Maximizing a Cauchy likelihood $C(\theta, 1)$.

• When maximizing the likelihood of a Cauchy $C(\theta, 1)$ sample,

$$\ell(\theta|x_1,...,x_n) = \frac{1}{\pi} \prod_{i=1}^n \frac{1}{1+(x_i-\theta)^2}$$

- The sequence of maxima (MLEs) $\rightarrow \theta^* = 0$ when $n \rightarrow \infty$.
- But the journey is not a smooth one . . .

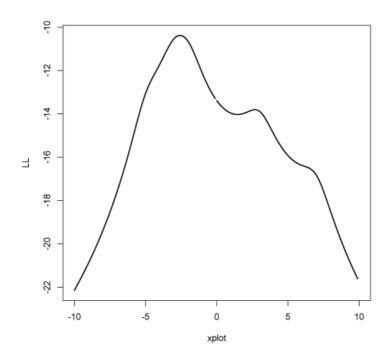
MONTE CARLO OPTIMIZATION - CAUCHY LIKELIHOOD



- MLEs (*left*) at each sample size, n = 1,500, and plot of final likelihood (*right*).
 - Why are the MLEs so wiggly?
 - The likelihood is not as well-behaved as it seems.

MONTE CARLO OPTIMIZATION - CAUCHY LIKELIHOOD

- The likelihood $\ell(\theta|x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{1 + (x_i \theta)^2}$ is like a polynomial of degree 2n.
- The derivative has 2n zeros.
- Hard to see if n = 500.
- Here is n = 5.



R code.

MONTE CARLO OPTIMIZATION - NEWTON-RAPHSON

- Similarly, nlm is a generic R function using the Newton-Raphson method.
- Based on the recurrence relation

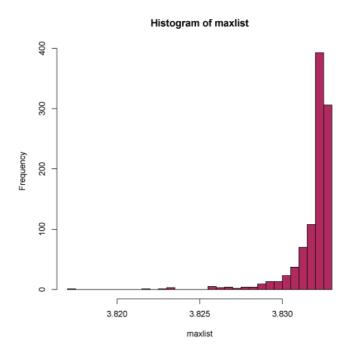
$$\theta_{i+1} = \theta_i - \left[\frac{\partial^2 h}{\partial \theta \partial \theta^T}(\theta_i)\right]^{-1} \frac{\partial h}{\partial \theta}(\theta_i).$$

where the matrix of the second derivatives is called the *Hessian*

- This method is perfect when h is quadratic.
- But may also deteriorate when h is highly nonlinear.
- It also obviously depends on the starting point θ_0 when *h* has several minima.

STOCHASTIC SEARCH - A BASIC SOLUTION

- A natural if rudimentary way of using simulation to find $\max_{\theta} h(\theta)$.
 - Simulate points over Θ according to an arbitrary distribution f positive on Θ .
 - Until a high value of $h(\theta)$ is observed.



- Recall $h(x) = [\cos(50x) + \sin(20x)]^2$.
- Max=3.8325.
- Histogram of 1000 runs.

STOCHASTIC SEARCH - STOCHASTIC GRADIENT METHODS

- Generating direct simulations from the target can be difficult.
- Different stochastic approach to maximization.
 - Explore the surface in a local manner.
 - Can use $\theta_{j+1} = \theta_j + \epsilon_j$.
 - A Markov Chain.
 - The random component ϵ_j can be arbitrary.
- Can also use features of the function: Newton-Raphson Variation.

$$\theta_{j+1} = \theta_j + \alpha_j \nabla h(\theta_j), \quad \alpha_j > 0.$$

- Where $\nabla h(\theta_j)$ is the gradient.
- α_j the step size.

STOCHASTIC GRADIENT METHODS

- In difficult problems.
 - The gradient sequence will most likely get stuck in a local extremum of h.
- Stochastic Variation.

$$abla h(heta_j) pprox rac{h(heta_j + eta_j arsigma_j) - h(heta_j - eta_j arsigma_j)}{2eta_j} arsigma_j = rac{
abla h(heta_j, eta_j arsigma_j)}{2eta_j} arsigma_j.$$

- β_j is a second decreasing sequence.
- ς_j is uniform on the unit sphere $||\varsigma|| = 1$.
- We then use

$$\theta_{j+1} = \theta_j + \frac{\alpha_j}{2\beta_j} \nabla h(\theta_j, \beta_j \varsigma_j) \varsigma_j.$$

SIMULATED ANNEALING - INTRODUCTION

- His name is borrowed from Metallurgy.
 - A metal manufactured by a slow decrease of temperature (annealing).
 - Is stronger than a metal manufactured by a fast decrease of temperature.
- The fundamental idea of simulated annealing methods.
 - A change of scale, or temperature.
 - Allows for faster moves on the surface of the function h to maximize.
 - Rescaling partially avoids the trapping attraction of local maxima.
- As T decreases toward 0, the values simulated from this distribution become concentrated in a narrower and narrower neighborhood of the local maxima of h.

METROPOLIS ALGORITHM/ SIMULATED ANNEALING

- Simulation method proposed by Metropolis et al. (1953).
- Update from θ_t to θ_{t+1} is based on Metropolis-Hasting algorithm step.
- ς is generated from a symmetric density g.
- The new value of θ_{t+1} is generated as

$$heta_{t+1} = \left\{ egin{array}{ccc} heta_t + arsigma & ext{with probability} &
ho = \exp(
abla h/T) \wedge 1 \\ heta_t & ext{with probability} & 1 -
ho \end{array}
ight.$$

$$- \quad \Delta h = h(\theta_t + \varsigma) - h(\theta_t).$$

- If $h(\varsigma) \ge h(\theta_t)$, $\theta_t + \varsigma$ is accepted.
- If $h(\theta_t + \varsigma) < h(\theta_t)$, ς may still be accepted.
- This allows escape from local maxima.

SIMULATED ANNEALING - METROPOLIS ALGORITHM COM-MENTS

- Simulated annealing typically modifies the temperature T at each iteration.
- It has the form:
 - 1. Simulate ς from an instrumental distribution with density $g(\varsigma)$.
 - 2. Accept $\theta_{i+1} = \theta_i + \varsigma$ with probability

$$\rho_i = \exp\{\Delta h_i/T_i\} \land 1;$$

take $\theta_{i+1} = \theta_i$ otherwise.

- 3. Update T_i to T_{i+1} .
- All positive moves accepted.
- As $T \downarrow 0$.
 - Harder to accept downward moves.
 - No big downward moves.
- Not a Markov Chain difficult to analyze.