
Computational Statistics

Silvia Bianconcini

Department of Statistical Sciences, University of Bologna.

Via Belle Arti, 41 - 40126 Bologna, Italy.

E-mail: silvia.bianconcini@unibo.it.

Saverio
Saverio Ranciati

Saverio
saverio.ranciati2@unibo.it

OUTLINE OF THE COURSE

1. Introduction on basic R programming.

2. Random variable generation.

3. Monte Carlo integration.

4. Monte Carlo optimization.

REFERENCES

1. Notes and slides (available at iol.unibo.it).

2. C. Robert and G. Casella (2010). Introducing Monte Carlo Methods

with R. New York: Springer-Verlag.

3. W.J. Braun and D.J. Murdoch (2007). A First Course in Statistical

Programming with R. Cambridge University Press.

EXAM

Written exam and homework assignments.

2

Saverio

Saverio
virtuale.unibo.it)

Saverio

Saverio
(these notes were kindly provided by Prof. Silvia Bianconcini)

Saverio

1. Basic R programming

• We introduce the programming language R.

• Input and output, data structures, and basic programming

commands.

• The material is both crucial and unavoidably sketchy.
3

INTRODUCTION

• This is a quick introduction to R.

• There are entire books devoted to R.

– R Reference Card.

– available at http://cran.r-project.org/doc/contrib/Short-

refcard.pdf.

• Take Heart!

– The syntax of R is simple and logical.

– The best, and in a sense the only, way to learn R is th-

rough trial-and-error.

• Embedded help commands help() and help.search().

– help.start() opens a Web browser linked to the local

manual pages.

4

WHY R?

• There exist other languages, most (all?) of them faster

than R, like Matlab, and even free, like C or Python.

• The language combines a sufficiently high power (for an

interpreted language) with a very clear syntax both for sta-

tistical computation and graphics.

• R is a flexible language that is object-oriented and thus

allows the manipulation of complex data structures in a

condensed and efficient manner.

• Its graphical abilities are also remarkable.

• R offers the additional advantages of being a free and open-

source system.

– There is even an R newsletter, R-News.

– Numerous (free) Web-based tutorials and user’s ma-

nuals.

• It runs on all platforms: Mac, Windows, Linux and Unix.

• It is increasingly common to see people who develop new

methodology simultaneously producing an R package.
5

GETTING STARTED

• Type demo() for some demos; demo(image) and demo(graphics).

• help() for on-line help, or help.start() for an HTML brow-

ser interface to help.

• Type q() to quit R.

• Additional packages can be loaded via the library command,

as in

> library(combinat) # combinatorics utilities

> library(datasets) # The R Datasets Package

– There exist hundreds of packages available on the Web.

> install.package("mcsm")

• A library call is required each time R is launched.

6

R OBJECTS

• R distinguishes between several types of objects.

– scalar, vector, matrix, time series, data frames, func-

tions, or graphics.

– An R object is mostly characterized by a mode.

– The different modes are

∗ null (empty object),

∗ logical (TRUE or FALSE),

∗ numeric (such as 3, 0.14159, or 2+sqrt(3)),

∗ complex, (such as 3-2i or complex(1,4,-2)), and

∗ character (such as “Blue”, “binomial”, “male”, or

“y=a+bx”).

• The R function str applied to any R object will show its

structure.

• R operates on those types as a regular function would ope-

rate on a scalar.

• Avoid loops in favor of matrix mainpulations.
7

THE vector CLASS

> a=c(5,5.6,1,4,-5) build the object a containing a numeric
vector of dimension 5 with elements
5, 5.6, 1, 4, -5.

> a[1] display the first element of a.

> b=a[2:4] build the numeric vector b of dimension
3 with elements 5.6, 1, 4.

> d=a[c(1,3,5)] build the numeric vector d of dimension
3 with elements 5, 1, -5.

> 2*a multiply each element of a by 2
and display the result.

> b%%3 provides each element of b modulo 3.

> e=3/d build the numeric vector e of
dimension 3 and elements 3/5, 3, -3/5.

> log(d*e) multiply the vectors d and e term by
term and transform each term into
its natural logarithm.

> sum(d) calculate the sum of d.

> length(d) display the length of d.

8

MORE ON THE vector CLASS

> t(d) transpose d, the result is a row vector.

> t(d)*e elementwise product between two
vectors with identical lengths.

> t(d)%*%e matrix product between two vectors
with identical lengths.

> g=c(sqrt(2),log(10)) build the numeric vector g of dimension

2 and elements
√
2, log(10).

> e[d==5] build the subvector of e that contains
the components e[i] such that d[i]=5.

> a[-3] create the subvector of a that contains
all components of a but the third.

> is.vector(d) display the logical expression TRUE
if a vector and FALSE else.

9

THE matrix, array, and factor CLASSES

• The matrix class provides the R representation of matrices.

• A typical entry is

> x=matrix(vec,nrow=n,ncol=p).

– Creates an n× p matrix whose elements are those of the

vector vec of the dimension np.

• Some manipulations on matrices.

– The standard matrix product is denoted by %*%,

– while ∗ represents the term-by-term product.

– diag gives the vector of the diagonal elements of a ma-

trix.

– crossprod replaces the product t(x)%*%y on either vectors

or matrices.

– crossprod(x,y) more efficient.

• apply is easy to use for functions operating on matrices by

row or column.
10

Some matrix COMMANDS

> x1=matrix(1:20,nrow=5) build the numeric matrix x1 of
dimension 5× 4 with first row 1, 6,
11, 16.

> x2=matrix(1:20,nrow=5, build the numeric matrix x2 of
byrow=T) dimension 5× 4 with first row 1, 2,

3, 4.

> a=x1%*%t(x2) matrix product.

> c=x1*x2 term-by-term product between x1

and x2.

> dim(x1) display the dimensions of x1.

> b[,2] select the second column of b.

> b[c(3,4),] select the third and fourth rows of b.

> b[-2,] delete the second row of b.

> rbind(x1,x2) vertical merging of x1 and x2.

> cbind(x1,x2) horizontal merging of x1 and x2.

> apply(x1,1,sum) calculate the sum of each row of x1.

> as.matrix(1:10) turn the vector 1:10 into a
10× 1 matrix.

11

The list and data.frame CLASSES

• A list is a collection of arbitrary objects known as its com-

ponents.

> li=list(num=1:5,y="color",a=T) create a list with three

arguments.

• The last class we briefly mention is the data frame.

– A list whose elements are possibly made of differing

modes and attributes.

– But have the same length.

> v1=sample(1:12,30,rep=T) simulate 30 independent uni-

form 1, 2, . . . , 12.

> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 inde-

pendent uniform {A, B, . . . , J}.

> v3=runif(30) simulate 30 independent uniform [0, 1].

> v4=rnorm(30) simulate 30 independent standard nor-

mals.

> xx=data.frame(v1,v2,v3,v4) create a data frame.
12

PROBABILITY DISTRIBUTION IN R

• R, or the web, has about all probability distributions.

• Prefixes: p,d,q,r.

Distribution Core Parameters Default values
Beta beta shape1,shape2

Binomial binom size,prob
Cauchy cauchy location,scale 0,1
Chi-square chisq df
Exponential exp 1/mean 1
F f df1,df2
Gamma gamma shape,1/scale

Log-Normal lnorm mean,sd 0,1
Logistic logis location,scale 0,1
Normal norm mean,sd 0,1
Poisson pois lambda
Student t df

Uniform unif min,max 0,1
Weibull weibull shape

13

BASIC STATISTICS: t-TEST

• Test on the mean.

> x=rnorm(25) #produces a N(0,1) sample of size 25

> t.test(x)

One Sample t-test

data: x

t = -0.8168, df = 24, p-value = 0.4220

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.4915103 0.2127705

sample estimates:

mean of x

-0.1393699

SOME OTHER STUFF

• Graphical facilities.

– Can do a lot; see plot and par.

• Writing new R functions.

– h=function(x)(sin(x)^2+cos(x)^3)^(3/2)

– We will do this a lot.
14

• Input and output in R.

– write.table, read.table, scan.

• Don’t forget the mcsm package.

2. Random variable generation

• We present practical techniques that can produce random

variables.

• From both standard and nonstandard distributions.

• First: Transformation methods.

• Next: Indirect Methods - Accept-Reject.
15

INTRODUCTION

• Monte Carlo methods rely on

– The possibility of producing a supposedly endless flow

of random variables.

– For well-known or new distributions.

• Such a simulation is, in turn,

– Based on the production of uniform random variables on

the interval (0, 1).

• We are not concerned with the details of producing uniform

random variables.

• We assume the existence of such a sequence.

16

USING THE R GENERATORS

R has a large number of functions that will generate the stan-

dard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a G(5/2,9/2) di-

stribution.

• It is therefore,

– Counter-productive.

– Inefficient.

– And even dangerous.

• To generate from those standard distributions.

• If it is built into R, use it.

• But....we will practice on these.

• The principles are essential to deal with distributions that

are not built into R.

17

UNIFORM SIMULATION

• The uniform generator in R is the function runif.

• The only required entry is the number of values to be ge-

nerated.

• The other optional parameters are min and max, with R code

> runif(100, min=2, max=5)

will produce 100 random variables U(2,5).

UNIFORM SIMULATION: CHECKING THE GENERATOR

• A quick check on the properties of this uniform generator is

to

– Look at a histogram of the Xi’s.

– Plot the pairs (Xi, Xi+1).

– Look at the estimate autocorrelation function.

• Look at the R code

> Nsim=10^4 #number of random numbers
18

> x=runif(Nsim)

> x1=x[-Nsim] #vectors to plot

> x2=x[-1] #adjacent pairs

> par(mfrow=c(1,3))

> hist(x)

> plot(x1,x2)

> acf(x)

UNIFORM SIMULATION: PLOTS FROM THE GENERATOR

• Histogram (left), pairwise plot (center), and estimated au-

tocorrelation function (right) of a sequence of 10000 uni-

form random numbers generated by runif.

UNIFORM SIMULATION: SOME COMMENTS

• Remember: runif does not involve randomness per se.

• It is a deterministic sequence based on a random starting

point.

• The R function set.seed can produce the same sequence.

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(2)

> runif(5)

[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

• Setting the seed determines all the subsequent values.

19

THE INVERSE TRANSFORM

• The Probability Integral Transform

– Allows us to transform a uniform into any random va-

riable.

• For example, if X has density f and cdf F , then we have

the relation

F (x) =

∫ x

−∞
f(t)dt,

and we set U = F (X) and solve for X.

• Example 2.1.

– If X ∼ Exp(1), then F (x) = 1− e−x.

– Solving for x in u = 1− e−x gives x = − log(1− u).

20

GENERATING EXPONENTIALS

> Nsim=10^4 #number of random variables

> U=runif(Nsim)

> X=-log(U) #transforms of uniforms

> Y=rexp(Nsim) #exponentials from R

> par(mfrow=c(1,2)) #plots

> hist(X,freq=F,main="Exp from Uniform")

> hist(Y,freq=F,main="Exp from R")

21

• Histograms of exponential random variables: Inverse tran-

sform (right), R command rexp (left), Exp(1) density on

top.

GENERATING OTHER RANDOM VARIABLES FROM UNI-

FORMS

• This method is useful for other probability distributions.

– Ones obtained as a transformation of uniform random

variables.

• Logistic pdf: f(x) = 1
β

e−(x−µ)/β

[1+e−(x−µ)/β]2
, cdf F (x) = 1

1+e−(x−µ)/β .

• Cauchy pdf: f(x) = 1
πσ

1

1+(x−µ

σ)
2 , cdf F (x) = 1

2
+ 1

π
arctan

(

x−µ
σ

)

.

22

GENERAL TRANSFORMATION METHODS

• When a density f is linked in a relatively simple way

– To another distribution easy to simulate.

– This relationship can be use to construct an algorithm

to simulate from f .

• If the Xi’s are i.i.d. Exp(1) random variables,

– three standard distributions can be derived as

Y = 2

ν
∑

j=1

Xj ∼ χ2
2ν, ν ∈ N

∗

Y = β

a
∑

j=1

Xj ∼ G(a, β), a ∈ N
∗

Y =

∑a
j=1Xj

∑a+b
j=1Xj

∼ Be(a, b), a, b ∈ N
∗

where N∗ = {1,2, . . .}.

23

GENERAL TRANSFORMATION METHODS - χ2
6 RANDOM

VARIABLES

• For example, to generate χ2
6 random variables, we could use

the R code

> U=runif(3*10^4)

> U=matrix(data=U,nrow=3) #matrix for sums

> X=-log(U) #uniform to exponential

> X=2* apply(X,2,sum) #sum up to get chi squares

• Not nearly as efficient as calling rchisq, as can be checked

by the R code

> system.time(test1());system.time(test2())

user system elapsed

0.104 0.000 0.107

user system elapsed

0.004 0.000 0.004

• test1 corresponds to the R code above.

• test2 corresponds to X=rchisq(10^4,df=6).

24

GENERAL TRANSFORMATION METHODS - COMMENTS

• These transformations are quite simple and will be used in

our illustrations.

• However, there are limits to their usefulness:

– No odd degrees of freedom.

– No normals.

• For any specific distribution, efficient algorithms have been

developed.

• Thus, if R has a distribution built in, it is almost always

worth using.

25

GENERAL TRANSFORMATION METHODS - A NORMAL GE-

NERATOR

• Box-Muller algorithm - two normals from two uniforms.

• If U1 and U2 are iid U [0,1], the variables X1 and X2

X1 =
√

−2 log(U1) cos(2πU2), X2 =
√

−2 log(U1) sin(2πU2)

are iid N(0,1) by virtue of a change of variable argument.

• The Box-Muller algorithm is exact, not a crude CLT-based

approximation.

• Note that this is not the generator implemented in R.

– It uses the probability inverse transform.

– With a very accurate representation of the normal cdf.

26

GENERAL TRANSFORMATION METHODS - MULTIVARIA-

TE NORMALS

• Can simulate a multivariate normal variable using univariate

normals.

– Cholesky decomposition of Σ = AA′.

– Y ∼ Np(0, I) ⇒ AY ∼ Np(0,Σ).

• There is an R package that replicates those steps, called

rmnorm.

– In the mnormt library.

– Can also calculate the probability of hypercubes with the

function sadmvn.

> sadmvn(low=c(1,2,3),upp=c(10,11,12),

+ mean=rep(0,3),var=B)

[1] 9.012408e-05

attr(,"error")

[1] 1.729111e-08

• B is a positive-definite matrix.

• This is quite useful since the analytic derivation of this

probability is almost always impossible.

27

DISCRETE DISTRIBUTIONS

• To generate discrete random variables we have an “all-

purpose” algorithm.

• Based on the inverse transform principle.

• To generate X ∼ Pθ, where Pθ is supported by the integers,

– We can calculate the probabilities, once for all, assuming

we can store them

p0 = Pθ(X ≤ 0), p1 = Pθ(X ≤ 1), p2 = Pθ(X ≤ 2), . . . ,

– And then generate U ∼ U [0,1] and take

X = k if pk−1 < U < pk.

28

DISCRETE DISTRIBUTIONS - BINOMIAL

• Example. To generate X ∼ Bin(10,0.3).

– The probability values are obtained by pbinom(k,10,0.3).

p0 = 0.028, p1 = 0.149, p2 = 0.382, . . . , p10 = 1

– First solution: writing your own function.

r.bin.dis<-function(n,x,p){

values<-rep(NA,n)

P<-cumsum(p)

for (i in 1:n){u<-runif(1)

j<-1

while (u > P[j]){j<-j+1}

values[i]<-x[j]}

values}

– Second solution: sample function.

x<-sample(x,n,replace=TRUE,p)

29

DISCRETE DISTRIBUTIONS - COMMENTS

• Specific algorithms are usually more efficient.

• Improvement can come from a judicious choice of the pro-

babilities first computed.

• For example, if we want to generate from a Poisson with

λ = 100.

– The algorithm above is inefficient.

– We expect most of our observations to be in the interval

λ± 3
√
λ.

– For λ = 100 this interval is (70, 130).

– Thus, starting at 0 is quite wasteful.

• A first remedy is to “ignore” what is outside of a highly

likely interval.

– In the current example P (X < 70) + P (X > 130) =

0.00268.

30

DISCRETE DISTRIBUTIONS - Poisson R Code

• R code that can be used to generate Poisson random varia-

bles for large values of lambda.

• The sequence t contains the integer values in the range

around the mean.

> Nsim=10^4; lambda=100

> spread=3*sqrt(lambda)

> t=round(seq(max(0,lambda-spread),lambda+spread,1))

> prob=ppois(t, lambda)

> X=rep(0,Nsim)

> for (i in 1:Nsim){

+ u=runif(1)

+ X[i]=t[1]+sum(prob<u)-1 }

• The last line of the program checks to see what interval

the uniform random variable fell in and assigns the correct

Poisson value to X.

31

DISCRETE DISTRIBUTIONS - COMMENTS

• Another remedy is to start the cumulative probabilities at

the mode of the discrete distribution.

• Then explore neighboring values until the cumulative pro-

bability is almost 1.

• Specific algorithms exist for almost any distribution and are

often quite fast.

• So, if R has it, use it.

• But R does not handle every distribution that we will need.

32

ACCEPT-REJECTION METHODS - INTRODUCTION

• There are many distributions where transform methods fail.

• For these cases, we must turn to indirect methods.

– We generate a candidate random variable.

– Only accept it subject to passing a test.

• This class of methods is extremely powerful.

– It will allow us to simulate from virtually any distribution.

• Accept-Reject Methods

– Only require the functional form of the density f of

interest.

– f : target, g: candidate.

• Where it is simpler to simulate random variables from g.

33

ACCEPT-REJECTION ALGORITHM

• The only constraints we impose on this candidate density g.

– f and g have compatible supports (i.e., g(x) > 0 when

f(x) > 0).

– There is a constant M with f(x)/g(x) ≤ M for all x.

• X ∼ f can be simulated as follows.

– Generate Y ∼ g and, independently, generate U ∼ U [0,1].

– If U ≤ 1
M

f(Y)
g(Y)

, set X = Y .

– If the inequality is not satisfied, we then discard Y and

U and start again.

• Note that M = supx
f(x)
g(x)

.

• P (Accept) = 1
M
. Expected Waiting Time: M .

34

ACCEPT-REJECTION ALGORITHM - R IMPLEMENTATION

• Succinctly, the Accept-Reject Algorithm is

Accept-Reject Method

1. Generate Y ∼ g, U ∼ U [0,1];

2. Accept X = Y if U ≤ f(Y)/Mg(Y);

3. Return to 1 otherwise.

• R implementation: If randg generates from g.

> u=runif(1)*M

> y=randg(1)

> while (u>f(y)/g(y))

{

u=runif(1)*M

y=randg(1)

}

• Produces a single generation y from f .

35

ACCEPT-REJECTION ALGORITHM - NORMAL FROM DOU-

BLE EXPONENTIALS

• Candidate: Y ∼ 1
2
exp(−|y|).

• Target: X ∼ 1√
2π

exp(−x2/2).

1√
2π

exp(−y2/2)

1
2
exp(−|y|)

≤ 2√
2π exp(1/2)

Maximum at y = 1.

• Accept Y if U ≤ exp(−0.5Y 2 + |Y | − 0.5).

• Look at R code.

36

ACCEPT-REJECTION ALGORITHM - THEORY

• Why does this method work?

• A straightforward probability calculation shows

P (Y ≤ x|Accept) = P

(

Y ≤ x|U ≤ f(Y)

Mg(Y)

)

= P (X ≤ x)

Simulating from g, the output of this algorithm is exactly

distributed from f .

• The Accept-Reject method is applicable in any dimension.

• As long as g is a density over the same space as f .

• Only need to know f/g up to a constant.

• Only need an upper bound on M .

37

ACCEPT-REJECTION ALGORITHM - BETAS FROM UNI-

FORMS

• Generate X ∼ Beta(a, b).

• No direct method if a and b are not integers.

• Use a uniform candidate.

• For a = 2.7 and b = 6.3.

.7 and b = 6.3
Histogram of v

v

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

Histogram of Y

Y

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

• Acceptance Rate: 37%.

38

ACCEPT-REJECTION ALGORITHM - BETAS FROM BETAS

• Generate X ∼ Beta(a, b).

• No direct method if a and b are not integers.

• Use a beta candidate.

• For a = 2.7 and b = 6.3, Y ∼ Beta(2,6).
∼

Histogram of v

v

D
e
n
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Histogram of Y

Y

D
e
n
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

• Acceptance Rate: 60%.

39

ACCEPT-REJECTION ALGORITHM - BETAS FROM BETAS

- DETAILS

• Beta density ∝ xa(1− x)b.

• Can generate if a and b integers.

• If not, use candidate with a1 and b1 integers

ya(1− y)b

ya1(1− y)b1
maximized at y =

a− a1

a− a1 + b− b1
.

Need a1 < a and b1 < b.

• Efficiency increases as the candidate gets closer to the tar-

get.

• Look at R code.

40

ACCEPT-REJECTION ALGORITHM - COMMENTS

Some key properties of the Accept-Reject algorithm:

1. Only the ratio f/M is needed.

• So the algorithm does not depend on the normalizing

constant.

2. The bound f ≤ Mg need not be tight.

• Accept-Reject is valid, but less efficient, if M is replaced

with a larger constant.

3. The probability of acceptance is 1/M .

• So M should be as small as possible for a given compu-

tational effort.

41

3. Monte Carlo Integration

• We introduce the major concepts of Monte Carlo methods.

• The validity of Monte Carlo approximations relies on the

Law of Large Numbers.

• The versatility of the representation of an integral as an

expectation.
42

MONTE CARLO INTEGRATION - INTRODUCTION

• We will be concerned with evaluating integrals of the form

∫

χ

h(x)f(x)dx.

– f is a density.

– We can produce an almost infinite number of random

variables from f .

• We apply probabilistic results.

– Law of Large Numbers.

– Central Limit Theorem.

• The Alternative - Deterministic Numerical Integration.

– R functions area and integrate.

– OK in low (one) dimensions.

– Usually needs some knowledge of the function.

43

CLASSICAL MONTE CARLO INTEGRATION - THE MONTE

CARLO METHOD

• The generic problem: evaluate

Ef [h(X)] =

∫

χ

h(x)f(x)dx.

– X takes its values in χ.

• The Monte Carlo Method.

– Generate a sample (x1, . . . , xn) from the density f .

– Approximate the integral with

h̄n =
1

n

n
∑

j=1

h(xj).

44

CLASSICAL MONTE CARLO INTEGRATION - VALIDATING

THE MONTE CARLO METHOD

• The convergence

h̄n =
1

n

n
∑

j=1

h(xj) → Ef [h(X)] =

∫

χ

h(x)f(x)dx.

is valid by the Strong Law of Large Numbers.

• When h2(X) has a finite expectation under f ,

h̄n − Ef[h(X)]
√
vn

→ N(0,1).

– Follows from the Central Limit Theorem.

– vn = 1
n2

∑n
j=1[h(xj)− h̄n]2.

45

CLASSICAL MONTE CARLO INTEGRATION - A FIRST EXAM-

PLE

• Look at the function: h(x) = [cos(50x) + sin(20x)]2.

• Monitoring convergence.

• R code.

• The confidence band produced in this figure is not a 95%

confidence band in the classical sense. They are confidence

intervals were you to stop at a chosen number of iterations.
46

CLASSICAL MONTE CARLO INTEGRATION - COMMENTS

• The evaluation of the Monte Carlo error is a bonus.

• It assumes that vn is a proper estimate of the variance of h̄n.

• If vn does not converge, converges too slowly, the Central

Limit Theorem may not apply.

ANOTHER EXAMPLE

• Normal probability

Φ̂(t) =
1

n

n
∑

i=1

1xi≤t → Φ(t) =

∫ t

−∞

1√
2π

e−y2/2dy.

– The exact variance Φ(t)[1−Φ(t)]/n.

– Conservative: V ar ≈ 1/4n.

– For a precision of four decimals.

∗ Want 2×
√

1/4n ≤ 10−4 simulations.

∗ Take n = (104)2 = 108.

• This method breaks down for tail probabilities.
47

IMPORTANCE SAMPLING - INTRODUCTION

• Importance sampling is based on an alternative formulation

of the Strong Law of Large Numbers.

Ef [h(X)] =

∫

χ

h(x)
f(x)

g(x)
g(x)dx = Eg

[

h(X)f(X)

g(X)

]

– f is the target density.

– g is the candidate density.

– Sound familiar? Just like Accept-Reject.

• So

1

n

n
∑

i=1

f(xi)

g(xi)
h(xi) → Ef [h(X)]

• As long as

– V ar(h(X)f(X)/g(X)) < ∞.

– support of (h× f) contains the support of g.

48

REVISITING NORMAL TAIL PROBABILITIES

• Z ∼ N(0,1) and we are interested in the probability P (Z >

4.5).

• pnorm(-4.5,log=T)

[1] -12.59242

• Simulating Z(i) ∼ N(0,1) only produces a hit once in about

3 million of iterations!

– Very rare event for the normal.

– Not-so-rare for a distribution sitting out there!

• Take g = Exp(1) truncated at 4.5:

g(y) =
e−y

∫∞
4.5

e−xdx
= e−(y−4.5).

• The IS estimator is

1

n

n
∑

i=1

f(Y (i))

g(Y (i))
=

1

n

n
∑

i=1

e−Y 2
i /2 + Yi − 4.5√

2π
.

• R code.

49

IMPORTANCE SAMPLING - SELECTION OF THE IMPOR-

TANCE FUNCTION

Some choices of g are better than others.

While 1
n

∑n
i=1 h(xi)

f(xi)
g(xi)

→ Ef[h(X)] almost surely, its variance is

finite only when

Eg

[

h2(X)
f2(X)

g2(X)

]

= Ef

[

h2(X)
f(X)

g(X)

]

=

∫

χ

h2(x)
f(x)

g(x)
dx < ∞

• Instrumental distributions with tails lighter than those of f

(those with unbounded ratios f/g) are not appropriate for

importance sampling.

• If the ratio f/g is unbounded, the weights f(xi)/g(xi) will

vary widely, giving too much importance to a few values xi.

50

SELECTION OF THE IMPORTANCE FUNCTION - EXAM-

PLE

• Target: Cauchy density f(x) = 1
π

1
1+x2.

• Importance function: standard Normal density

g(x) =
1√
2π

exp
[

−x2/2
]

.

• The ratio f(x)/g(x) ∝ exp(x2/2)/(1 + x2) is explosive.

• R code

x=rnorm(10^6)

wein=decauchy(x)/dnorm(x)

boxplot(wein/sum(wein))

plot(cumsum(wein*(x>2)*(x<6))/cumsum(wein),type="l")

abline(a=pcauchy(6)-pcauchy(2),b=0,col="sienna")

51

IMPORTANCE SAMPLING - OPTIMAL IMPORTANCE FUNC-

TION

Distributions g with thicker tails than f ensure that the ratio f/g

does not cause the divergence of Ef

[

h2(X)f(X)
g(X)

]

.

Sufficient conditions

(a) f(x)/g(x) < M , ∀x ∈ χ and V arf [h(X)] < ∞;

(b) χ is compact, f(x) < F and g(x) > ε,∀x ∈ χ.

These conditions are quite restrictive.

Among the distributions g leading to finite variances for the

estimator 1
n

∑n
i=1 h(xi)

f(xi)
g(xi)

, the choice of g that minimizes the

variance of the estimator is

g∗(x) =
|h(x)|f(x)

∫

χ
|h(z)|f(z)dz

From a practical point of view, this suggests looking for distri-

butions g for which |h|f/g is almost constant with finite variance.

52

IMPORTANCE SAMPLING - EXAMPLE

Compute the integral
∫∞
0

e−x3

dx through importance sampling

from:

• Standard normal density.

• Exponential density function exp(1).

Evaluate the variability of each estimator using a single sequence

of length 1000.

int1<-function(n){

x=rnorm(n)

fn=rep(0,n)

fn[x>0]=exp(-x[x>0]^3)/dnorm(x[x>0])

fn}

int2<-function(n){

x=rexp(n)

fn=exp(-x^3)/dexp(x)

fn}

Nsim=10^4

i1=int1(Nsim)

i2=int2(Nsim)

mean(i1)

mean(i2)

v1=(mean(i1^2)-mean(i1)^2)/Nsim

v2=(mean(i2^2)-mean(i2)^2)/Nsim
53

4. Monte Carlo Optimization

• Two uses of computer-generated random variables to solve

optimization problems.

• The first use is to produce stochastic search technique.

– To reach the maximum (or minimum) of a function.

– Avoid being trapped in local maxima (or minima).

– Are sufficiently attracted by the global maximum (or

minimum).

• The second use of simulation is to approximate the function

to be optimized.
54

MONTE CARLO OPTIMIZATION - INTRODUCTION

• Optimization problems can mostly be seen as one of two

kinds:

– Find the extrema of a function h(θ) over a domain Θ.

– Find the solution(s) to an implicit equation g(θ) = 0

over a domain Θ.

• The problems are exchangeable.

– The second one is a minimization problem for a function

like h(θ) = g2(θ).

– While the first one is equivalent to solving ∂h(θ)/∂θ = 0.

• We only focus on the maximization problem.

55

MONTE CARLO OPTIMIZATION - DETERMINISTIC OR STO-

CHASTIC

• Similar to integration, optimization can be deterministic or

stochastic.

• Deterministic: performance dependent on properties of the

function (such as convexity, boundedness, and smoothness).

• Stochastic (simulation).

– Properties of h play a lesser role in simulation-based

approaches.

• Therefore, if h is complex or Θ is irregular, chose the sto-

chastic approach.

56

MONTE CARLO OPTIMIZATION - NUMERICAL OPTIMIZA-

TION

• R has several embedded functions to solve optimization pro-

blems.

– The simplest one is optimize (one dimensional).

Example: Maximizing a Cauchy likelihood C(θ,1).

• When maximizing the likelihood of a Cauchy C(θ,1) sample,

ℓ(θ|x1, . . . , xn) =
1

π

n
∏

i=1

1

1+ (xi − θ)2
.

• The sequence of maxima (MLEs) → θ∗ = 0 when n → ∞.

• But the journey is not a smooth one . . .

57

MONTE CARLO OPTIMIZATION - CAUCHY LIKELIHOOD

• MLEs (left) at each sample size, n = 1,500, and plot of

final likelihood (right).

– Why are the MLEs so wiggly?

– The likelihood is not as well-behaved as it seems.

58

MONTE CARLO OPTIMIZATION - CAUCHY LIKELIHOOD

• The likelihood ℓ(θ|x1, . . . , xn) =
∏n

i=1
1

1+(xi−θ)2
is like a poly-

nomial of degree 2n.

• The derivative has 2n zeros.

• Hard to see if n = 500.

• Here is n = 5.

• R code.

59

MONTE CARLO OPTIMIZATION - NEWTON-RAPHSON

• Similarly, nlm is a generic R function using the Newton-

Raphson method.

• Based on the recurrence relation

θi+1 = θi −
[

∂2h

∂θ∂θT
(θi)

]−1
∂h

∂θ
(θi).

where the matrix of the second derivatives is called the

Hessian

– This method is perfect when h is quadratic.

– But may also deteriorate when h is highly nonlinear.

– It also obviously depends on the starting point θ0 when

h has several minima.

60

STOCHASTIC SEARCH - A BASIC SOLUTION

• A natural if rudimentary way of using simulation to find

maxθ h(θ).

– Simulate points over Θ according to an arbitrary distri-

bution f positive on Θ.

– Until a high value of h(θ) is observed.

– Recall h(x) = [cos(50x) + sin(20x)]2.

– Max=3.8325.

– Histogram of 1000 runs.
61

STOCHASTIC SEARCH - STOCHASTIC GRADIENT

METHODS

• Generating direct simulations from the target can be diffi-

cult.

• Different stochastic approach to maximization.

– Explore the surface in a local manner.

– Can use θj+1 = θj + ǫj.

– A Markov Chain.

– The random component ǫj can be arbitrary.

• Can also use features of the function: Newton-Raphson

Variation.

θj+1 = θj + αj∇h(θj), αj > 0.

– Where ∇h(θj) is the gradient.

– αj the step size.

62

STOCHASTIC GRADIENT METHODS

• In difficult problems.

– The gradient sequence will most likely get stuck in a

local extremum of h.

• Stochastic Variation.

∇h(θj) ≈ h(θj + βjςj)− h(θj − βjςj)

2βj
ςj =

∇h(θj, βjςj)

2βj
ςj.

– βj is a second decreasing sequence.

– ςj is uniform on the unit sphere ||ς|| = 1.

• We then use

θj+1 = θj +
αj

2βj
∇h(θj, βjςj)ςj.

63

SIMULATED ANNEALING - INTRODUCTION

• His name is borrowed from Metallurgy.

– A metal manufactured by a slow decrease of temperature

(annealing).

– Is stronger than a metal manufactured by a fast decrease

of temperature.

• The fundamental idea of simulated annealing methods.

– A change of scale, or temperature.

– Allows for faster moves on the surface of the function h

to maximize.

– Rescaling partially avoids the trapping attraction of local

maxima.

• As T decreases toward 0, the values simulated from this di-

stribution become concentrated in a narrower and narrower

neighborhood of the local maxima of h.

64

METROPOLIS ALGORITHM/ SIMULATED ANNEALING

• Simulation method proposed by Metropolis et al. (1953).

• Update from θt to θt+1 is based on Metropolis-Hasting algo-

rithm step.

• ς is generated from a symmetric density g.

• The new value of θt+1 is generated as

θt+1 =

{

θt + ς with probability ρ = exp(∇h/T) ∧ 1
θt with probability 1− ρ

– ∆h = h(θt + ς)− h(θt).

– If h(ς) ≥ h(θt), θt + ς is accepted.

– If h(θt + ς) < h(θt), ς may still be accepted.

– This allows escape from local maxima.

65

SIMULATED ANNEALING - METROPOLIS ALGORITHM COM-

MENTS

• Simulated annealing typically modifies the temperature T at

each iteration.

• It has the form:

1. Simulate ς from an instrumental distribution with density

g(ς).

2. Accept θi+1 = θi + ς with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.

• All positive moves accepted.

• As T ↓ 0.

– Harder to accept downward moves.

– No big downward moves.

• Not a Markov Chain - difficult to analyze.

66

