Introducing Monte Carlo Methods with R

Christian P. Robert George Casella Université Paris Dauphine University of Florida xian@ceremade.dauphine.fr casella@ufl.edu

Based on

- Introducing Monte Carlo Methods with ^R, 2009, Springer-Verlag
- Data and R programs for the course available at http://www.stat.ufl.edu/ casella/IntroMonte/

Chapter 1: Basic R Programming

"You're missing the big picture," he told her. "A good album should be more than the sum of its parts."

Ian Rankin

Exit Music

This Chapter

- \triangleright We introduce the programming language R
- ! Input and output, data structures, and basic programming commands
- \blacktriangleright The material is both crucial and unavoidably sketchy

Basic R Programming Introduction

- \blacktriangleright This is a quick introduction to R
- There are entire books devoted to R
	- \triangleright R Reference Card

! available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf

- lacktriangleright Take Heart!
	- \triangleright The syntax of R is simple and logical

 \triangleright The best, and in a sense the only, way to learn **R** is through trial-and-error

! Embedded help commands help() and help.search() \triangleright help.start() opens a Web browser linked to the local manual pages

Basic R Programming Why **R** ?

- ! There exist other languages, most (all?) of them faster than ^R, like Matlab, and even free, like C or Python.
- ! The language combines ^a sufficiently high power (for an interpreted language) with a very clear syntax both for statistical computation and graphics.
- \triangleright R is a flexible language that is *object-oriented* and thus allows the manipulation of complex data structures in ^a condensed and ^efficient manner.
- ! Its graphical abilities are also remarkable
	- \triangleright Possible interfacing with LAT_EXusing the package Sweave.

Basic R Programming Why **R** ?

- R offers the additional advantages of being a free and open-source system \triangleright There is even an R newsletter, $R\text{-}News$
	- \triangleright Numerous (free) Web-based tutorials and user's manuals
- It runs on all platforms: Mac, Windows, Linux and Unix
- \blacktriangleright R provides a powerful *interface*
	- \triangleright Can integrate programs written in other languages
	- \triangleright Such as C, C++, Fortran, Perl, Python, and Java.
- It is increasingly common to see people who develop new methodology simultaneously producing an ^R package
- \blacktriangleright Can interface with WinBugs

Basic R Programming Getting started

- Type 'demo()' for some demos; demo(image) and demo(graphics)
- \blacktriangleright 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
- \blacktriangleright Type 'q()' to quit R.
- ! Additional packages can be loaded via the library command, as in
	- > library(combinat) # combinatorics utilities
	- > library(datasets) # The ^R Datasets Package
	- \triangleright There exist hundreds of packages available on the Web.
		- > install.package("mcsm")
- A library call is required each time R is launched

Basic R Programming ^R objects

 \triangleright R distinguishes between several types of *objects*

 \triangleright scalar, vector, matrix, time series, data frames, functions, or graphics.

 \triangleright An R object is mostly characterized by a mode

 \triangleright The different modes are

- null (empty object),
- logical $(\mathsf{TRUE}\,\,\mathrm{or}\,\,\mathsf{FALSE}),$
- numeric (such as 3, 0.14159, or 2 $+$ sqrt $(3)),$
- complex, (such as 3-2i or complex $(1,\!4,\!2)),\,{\rm and}\,$
- character $({\rm such\,\,as\,\,}$ "Blue" $,$ "binomial" $,$ "male" $,{\rm\,or\,\,}$ "y=a+bx" $){\rm ,}$

• The R function str applied to any R object will show its structure.

Basic R Programming Interpreted

- ! ^R operates on those types as ^a regular function would operate on ^a scalar
- \blacktriangleright R is interpreted \Rightarrow Slow
- ! Avoid loops in favor of matrix mainpulations

Basic R Programming – The vector class

Basic R Programming More **vector** class

- $> e=3/d$ build the numeric vector e of dimension 3 and elements $3/5$, 3 , $-3/5$
- $> log(d*e)$ multiply the vectors d and e term by term and transform each term into its natural logarithm
- $>$ sum(d) calculate the sum of d
- > length(d) display the length of ^d

Basic R Programming Even more vector class

Basic R Programming Comments on the vector class

• The ability to apply scalar functions to vectors: Major Advantage of **R**. \triangleright > lgamma(c(3,5,7))

 \triangleright returns the vector with components $(\log \Gamma(3), \log \Gamma(5), \log \Gamma(7)).$

! Functions that are specially designed for vectors include

sample, permn, order, sort, and rank

 \triangleright All manipulate the order in which the components of the vector occur. \triangleright permn is part of the combinat library

! The components of ^a vector can also be identified by names. \triangleright For a vector **x**, **names** (**x**) is a vector of characters of the same length as **x**

Basic R Programming The matrix, array, and factor classes

 \blacktriangleright The matrix class provides the R representation of matrices.

- \blacktriangleright A typical entry is
	- > x=matrix(vec,nrow=n,ncol=p)

 \triangleright Creates an $n \times p$ matrix whose elements are of the dimension np vector vec

- ! Some manipulations on matrices
	- \triangleright The standard matrix product is denoted by $\frac{1}{2}$.
	- \triangleright while $*$ represents the term-by-term product.
	- \triangleright diag gives the vector of the diagonal elements of a matrix
	- \triangleright crossprod replaces the product $t(x)\frac{1}{2}\frac{1}{2}$ on either vectors or matrices \triangleright crossprod(x,y) more efficient
	- \triangleright apply is easy to use for functions operating on matrices by row or column

Basic R Programming Some matrix commands

 \blacktriangleright Lots of other commands that we will see throughout the course

Basic R Programming The list and data frame classes The Last One

 \blacktriangleright A list is a collection of arbitrary objects known as its *components*

> l i=list(num=1:5,y="color",a=T) $\,\rm{create\,\,a}$ list with three $\,\rm{arguments}$

 \blacktriangleright The last class we briefly mention is the data frame \triangleright A list whose elements are possibly made of differing modes and attributes \triangleright But have the same length

- $> v1 = sample(1:12, 30, rep=T)$
- $> v2 = sample(LETTERS[1:10], 30, rep=T)$
- $>$ v3=runif(30)
- $> v4 = rnorm(30)$
- $>$ xx=data.frame(v1,v2,v3,v4) $\qquad \qquad \text{create a data frame}$

simulate 30 independent uniform $\{1,2,\ldots, 12\}$ simulate 30 independent uniform $\{a, b, ..., j\}$ simulate 30 independent uniform $[0, 1]$ simulate 30 independent standard normals

 \blacktriangleright R code

Probability distributions in ^R

 \blacktriangleright R , or the web, has about all probability distributions

 \blacktriangleright Prefixes: p, d,q, r

Basic and not-so-basic statistics t-test

 \blacktriangleright Testing equality of two means

```
> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)
```

```
One Sample t-test
data: x
t = -0.8168, df = 24, p-value = 0.4220
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.4915103 0.2127705
sample estimates:
mean of x
-0.1393699
```
Basic and not-so-basic statistics Correlation

• Correlation

- > attach(faithful) #resident dataset
- > cor.test(faithful[,1],faithful[,2])

Pearson's product-moment correlation

```
data: faithful[, 1] and faithful[, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.8756964 0.9210652
sample estimates:
      cor
0.9008112
```
\blacktriangleright R code

Basic and not-so-basic statistics Splines

- \triangleright Nonparametric regression with loess function or using *natural splines*
- ! Relationship between nitrogen level in soil and abundance of ^a bacteria AOB

- \blacktriangleright Natural spline fit *(dark)* \triangleright With ns=2 (linear model)
- \blacktriangleright Loess fit *(brown)* with span=1.25

 \blacktriangleright R code

Basic and not-so-basic statistics Generalized Linear Models

! Fitting ^a binomial (logistic) ^glm to the probability of suffering from diabetes for ^a woman within the Pima Indian population

```
> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)
```
Deviance Residuals:

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)(Intercept) -6.49870 1.17459 -5.533 3.15e-08 ***
bmi 0.10519 0.02956 3.558 0.000373 ***
age 0.07104 0.01538 4.620 3.84e-06 ***
---
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
(Dispersion parameter for binomial family taken to be 1) Null deviance: 256.41 on 199 degrees of freedom Residual deviance: 215.93 on 197 degrees of freedom AIC: 221.93 Number of Fisher Scoring iterations: 4

Basic and not-so-basic statistics Generalized Linear Models – Comments

 \triangleright Concluding with the significance both of the body mass index bmi and the age

• Other generalized linear models can be defined by using a different family value

```
> glm(y ~x, family=quasi(var="mu^2", link="log"))
```
 \triangleright Quasi-Likelihood also

 \blacktriangleright Many many other procedures \triangleright Time series, anova,...

• One last one

Basic and not-so-basic statistics Bootstrap

- \blacktriangleright The bootstrap procedure uses the empirical distribution as a substitute for the true distribution to construct variance estimates and confidence intervals.
	- \triangleright A sample X_1,\ldots,X_n is resampled with replacement

 \triangleright The empirical distribution has a finite but large support made of n^n points

For example, with data y, we can create a bootstrap sample y^* using the code

```
> ystar=sample(y,replace=T)
```
 \triangleright For each resample, we can calculate a mean, variance, etc

Basic and not-so-basic statistics Simple illustration of bootstrap

Bootstrap Means

- \blacktriangleright A histogram of 2500 bootstrap means
- ! Along with the normal approximation
- \blacktriangleright Bootstrap shows some skewness
- \blacktriangleright R code

Basic and not-so-basic statistics Bootstrapping Regression

• The bootstrap is not a panacea

 \triangleright Not always clear which quantity should be bootstrapped \triangleright In regression, bootstrapping the residuals is preferred

> Linear regression

$$
Y_{ij} = \alpha + \beta x_i + \varepsilon_{ij},
$$

 α and β are the unknown intercept and slope, ε_{ij} are the iid normal errors

• The residuals from the least squares fit are given by

$$
\hat{\varepsilon}_{ij}=y_{ij}-\hat{\alpha}-\hat{\beta}x_i,
$$

 \triangleright We bootstrap the residuals

 \triangleright Produce a new sample $(\hat{\varepsilon}_{ij}^*)_{ij}$ by resampling from the $\hat{\varepsilon}_{ij}$'s

 \triangleright The bootstrap samples are then $y_{ij}^* = y_{ij} + \hat{\varepsilon}_{ij}^*$

Basic R Programming Some Other Stuff

 \blacktriangleright Graphical facilities

 \triangleright Can do a lot; see plot and par

! Writing new ^R functions

 \triangleright h=function(x)(sin(x)^2+cos(x)^3)^(3/2)

 \triangleright We will do this a lot

Input and output in R

 D write.table, read.table, scan

Don't forget the mcsm package

Chapter 2: Random Variable Generation

"It has long been an axiom of mine that the little things are infinitely the most important."

> Arthur Conan Doyle A Case of Identity

This Chapter

- \triangleright We present practical techniques that can produce random variables
- \blacktriangleright From both standard and nonstandard distributions
- **Eirst: Transformation methods**
- ! Next: Indirect Methods Accept–Reject

Introduction

! Monte Carlo methods rely on

 \triangleright The possibility of producing a supposedly endless flow of random variables \triangleright For well-known or new distributions.

- \blacktriangleright Such a simulation is, in turn,
	- \triangleright Based on the production of uniform random variables on the interval $(0, 1)$.
- ! We are not concerned with the details of producing uniform random variables
- We assume the existence of such a sequence

Introduction Using the ^R Generators

^R has ^a large number of functions that will generate the standard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a $\mathcal{G}(5/2, 9/2)$ distribution

- \blacktriangleright It is therefore,
	- \triangleright Counter-productive
	- \triangleright Inefficient
	- \triangleright And even dangerous,
- \triangleright To generate from those standard distributions
- \blacktriangleright If it is built into R , use it
- ▶ But....we will practice on these.

! The principles are essential to deal with distributions that are not built into R.

Uniform Simulation

- \blacktriangleright The uniform generator in R is the function runif
- ! The only required entry is the number of values to be generated.
- ! The other optional parameters are min and max, with R code
- > runif(100, min=2, max=5)

will produce 100 random variables $\mathcal{U}(2, 5)$.

Uniform Simulation Checking the Generator

- ! A quick check on the properties of this uniform generator is to
- \triangleright Look at a histogram of the X_i 's,
- \triangleright Plot the pairs (X_i, X_{i+1})

 \triangleright Look at the estimate autocorrelation function

- I Look at the R code
	- $>$ Nsim=10^{\degree 4} #number of random numbers > x=runif(Nsim) $> x1=x$ [$-Nsim$] #vectors to plot $> x2=x[-1]$ #adjacent pairs > par(mfrow=c(1,3)) > hist(x) > plot(x1,x2) > acf(x)

Uniform Simulation Plots from the Generator

 \blacktriangleright Histogram *(left)*, pairwise plot *(center)*, and estimated autocorrelation function (right) of a sequence of 10^4 uniform random numbers generated by runif.

Uniform Simulation Some Comments

• Remember: runif does not involve randomness per se.

- ! It is ^a deterministic sequence based on ^a random starting point.
- The R function set. seed can produce the same sequence.

```
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)
> runif(5)
[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481
```
! Setting the seed determines all the subsequent values

The Inverse Transform

 \blacktriangleright The Probability Integral Transform

 \triangleright Allows us to transform a uniform into any random variable

 \blacktriangleright For example, if X has density f and cdf F, then we have the relation

$$
F(x) = \int_{-\infty}^{x} f(t) dt,
$$

and we set $U = F(X)$ and solve for X

Example 2.1

 \triangleright If $X \sim \mathcal{E}xp(1)$, then $F(x)=1-e^{-x}$

 \triangleright Solving for x in $u = 1 - e^{-x}$ gives $x = -\log(1 - u)$

Generating Exponentials

 $>$ Nsim=10^4

#number of random variables

- > U=runif(Nsim)
- $> X=-log(U)$ #transforms of uniforms
- > Y=rexp(Nsim) #exponentials from R
- > par(mfrow=c(1,2)) #plots
- > hist(X,freq=F,main="Exp from Uniform")
- > hist(Y,freq=F,main="Exp from R")

- ! Histograms of exponential random variables
	- \triangleright Inverse transform (right)
	- \triangleright R command rexp (left)
	- \triangleright $\mathcal{E}xp(1)$ density on top
Generating Other Random Variables From Uniforms

 \blacktriangleright This method is useful for other probability distributions

 \triangleright Ones obtained as a transformation of uniform random variables

► Logistic pdf:
$$
f(x) = \frac{1}{\beta} \frac{e^{-(x-\mu)/\beta}}{[1+e^{-(x-\mu)/\beta}]^2}
$$
, cdf: $F(x) = \frac{1}{1+e^{-(x-\mu)/\beta}}$.
\n▶ Cauchy pdf: $f(x) = \frac{1}{\pi \sigma} \frac{1}{1+\left(\frac{x-\mu}{\sigma}\right)^2}$, cdf: $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan((x-\mu)/\sigma)$.

General Transformation Methods

 \blacktriangleright When a density f is linked in a relatively simple way

 \triangleright To another distribution easy to simulate

 \triangleright This relationship can be use to construct an algorithm to simulate from f

If the X_i 's are iid $\mathcal{E}xp(1)$ random variables,

 \triangleright Three standard distributions can be derived as

$$
Y = 2 \sum_{j=1}^{\nu} X_j \sim \chi_{2\nu}^2, \qquad \nu \in \mathbb{N}^*,
$$

\n
$$
Y = \beta \sum_{j=1}^a X_j \sim \mathcal{G}(a, \beta), \qquad a \in \mathbb{N}^*,
$$

\n
$$
Y = \frac{\sum_{j=1}^a X_j}{\sum_{j=1}^{a+b} X_j} \sim \mathcal{B}e(a, b), \qquad a, b \in \mathbb{N}^*,
$$

where $N^* = \{1, 2, ...\}$.

General Transformation Methods χ^2_6 Random Variables

For example, to generate χ^2_6 random variables, we could use the R code

- > U=runif(3*10^4)
- > U=matrix(data=U,nrow=3) #matrix for sums
- $> X=-log(U)$ #uniform to exponential
- > X=2* apply(X,2,sum) #sum up to ge^t chi squares

! Not nearly as ^efficient as calling rchisq, as can be checked by the ^R code

> system.time(test1());system.time(test2())

user system elapsed

0.104 0.000 0.107

user system elapsed

- 0.004 0.000 0.004
- ▶ test1 corresponds to the R code above
- \triangleright test2 corresponds to X=rchisq(10^4,df=6)

General Transformation Methods **Comments**

- ! These transformations are quite simple and will be used in our illustrations.
- ! However, there are limits to their usefulness,
- \triangleright No odd degrees of freedom
- \triangleright No normals
- ! For any specific distribution, ^efficient algorithms have been developed.
- \blacktriangleright Thus, if R has a distribution built in, it is almost always worth using

General Transformation Methods A Normal Generator

- ! Box–Muller algorithm two normals from two uniforms
- If U_1 and U_2 are iid $\mathcal{U}_{[0,1]}$
- \blacktriangleright The variables X_1 and X_2

$$
X_1 = \sqrt{-2\log(U_1)} \cos(2\pi U_2) , \qquad X_2 = \sqrt{-2\log(U_1)} \sin(2\pi U_2) ,
$$

 \blacktriangleright Are iid $\mathcal{N}(0, 1)$ by virtue of a change of variable argument.

! The Box–Muller algorithm is exact, not ^a crude CLT-based approximation

- \triangleright Note that this is *not* the generator implemented in R
	- \triangleright It uses the probability inverse transform
	- \triangleright With a very accurate representation of the normal cdf

General Transformation Methods Multivariate Normals

! Can simulate ^a multivariate normal variable using univariate normals \triangleright Cholesky decomposition of $\Sigma = AA'$

$$
\triangleright Y \sim \mathcal{N}_p(0, I) \Rightarrow AY \sim \mathcal{N}_p(0, \Sigma)
$$

• There is an R package that replicates those steps, called **rmnorm** \triangleright In the **mnormt** library

 \triangleright Can also calculate the probability of hypercubes with the function sadmun > sadmvn(low=c(1,2,3),upp=c(10,11,12),mean=rep(0,3),var=B) [1] 9.012408e-05 attr(,"error") [1] 1.729111e-08

 \blacktriangleright B is a positive-definite matrix

! This is quite useful since the analytic derivation of this probability is almost always impossible.

Discrete Distributions

- ! To generate discrete random variables we have an "all-purpose" algorithm.
- ! Based on the inverse transform principle
- \blacktriangleright To generate $X \sim P_{\theta}$, where P_{θ} is supported by the integers, \triangleright We can calculate—the probabilities \triangleright Once for all, assuming we can store them

$$
p_0 = P_\theta(X \le 0), \quad p_1 = P_\theta(X \le 1), \quad p_2 = P_\theta(X \le 2), \quad \dots,
$$

 \triangleright And then generate $U \sim \mathcal{U}_{[0,1]}$ and take

$$
X = k \text{ if } p_{k-1} < U < p_k.
$$

Discrete Distributions Binomial

► Example To generate $X \sim Bin(10, .3)$

 \triangleright The probability values are obtained by pbinom(k, 10, .3)

$$
p_0 = 0.028
$$
, $p_1 = 0.149$, $p_2 = 0.382$,..., $p_{10} = 1$,

 \triangleright And to generate $X \sim \mathcal{P}(7)$, take

 $p_0 = 0.0009, \quad p_1 = 0.0073, \quad p_2 = 0.0296, \dots,$

 \triangleright Stopping the sequence when it reaches 1 with a given number of decimals. \triangleright For instance, $p_{20} = 0.999985$.

• Check the R code

Discrete Distributions **Comments**

- \triangleright Specific algorithms are usually more efficient
- ! Improvement can come from ^a judicious choice of the probabilities first computed.
- \triangleright For example, if we want to generate from a Poisson with $\lambda = 100$ \triangleright The algorithm above is woefully inefficient \triangleright We expect most of our observations to be in the interval $\lambda \pm 3\sqrt{\lambda}$ \triangleright For $\lambda = 100$ this interval is (70, 130) \triangleright Thus, starting at 0 is quite wasteful
- ! A first remedy is to "ignore" what is outside of ^a highly likely interval \triangleright In the current example $P(X < 70) + P(X > 130) = 0.00268$.

Discrete Distributions Poisson R Code

- R code that can be used to generate Poisson random variables for large values of lambda.
- \blacktriangleright The sequence τ contains the integer values in the range around the mean.
- > Nsim=10^4; lambda=100
- > spread=3*sqrt(lambda)
- > t=round(seq(max(0,lambda-spread),lambda+spread,1))
- > prob=ppois(t, lambda)
- > X=rep(0,Nsim)
- > for (i in 1:Nsim){
- + $u=runif(1)$
- $+$ $X[i]=t[1]+sum(prob < u)-1$ }
- ! The last line of the program checks to see what interval the uniform random variable fell in and assigns the correct Poisson value to X.

Discrete Distributions **Comments**

- ! Another remedy is to start the cumulative probabilities at the mode of the discrete distribution
- \blacktriangleright Then explore neighboring values until the cumulative probability is almost 1.

- ! Specific algorithms exist for almost any distribution and are often quite fast.
- \blacktriangleright So, if R has it, use it.
- \blacktriangleright But R does not handle every distribution that we will need,

Mixture Representations

- ! It is sometimes the case that ^a probability distribution can be naturally represented as ^a mixture distribution
- That is, we can write it in the form

$$
f(x) = \int_{\mathcal{Y}} g(x|y)p(y) dy \quad \text{or} \quad f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x) ,
$$

 \triangleright The mixing distribution can be continuous or discrete.

 \blacktriangleright To generate a random variable X using such a representation, \triangleright we can first generate a variable Y from the mixing distribution \triangleright Then generate X from the selected conditional distribution

Mixture Representations Generating the Mixture

 \blacktriangleright Continuous

$$
f(x) = \int_{\mathcal{Y}} g(x|y)p(y) \, dy \Rightarrow y \sim p(y) \text{ and } X \sim f(x|y), \text{ then } X \sim f(x)
$$

! Discrete

$$
f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x) \Rightarrow i \sim p_i
$$
 and $X \sim f_i(x)$, then $X \sim f(x)$

! Discrete Normal Mixture R code

 $p_1 * N(\mu_1, \sigma_1) + p_2 * N(\mu_2, \sigma_2) + p_3 * N(\mu_3, \sigma_3)$

Mixture Representations Continuous Mixtures

 \triangleright Student's t density with ν degrees of freedom

$$
X|y \sim \mathcal{N}(0, \nu/y)
$$
 and $Y \sim \chi^2_{\nu}$.

 \triangleright Generate from a χ^2_{ν} then from the corresponding normal distribution \triangleright Obviously, using rt is slightly more efficient

If X is negative binomial $X \sim \mathcal{N}eg(n, p)$ $\triangleright X|y \sim \mathcal{P}(y)$ and $Y \sim \mathcal{G}(n, \beta)$, \triangleright R code generates from this mixture

Accept–Reject Methods Introduction

- There are many distributions where transform methods fail
- \triangleright For these cases, we must turn to *indirect* methods \triangleright We generate a candidate random variable \triangleright Only accept it subject to passing a test
- \triangleright This class of methods is extremely powerful.
	- \triangleright It will allow us to simulate from virtually any distribution.
- ▶ Accept–Reject Methods
	- \triangleright Only require the functional form of the density f of interest \triangleright f = target, g=candidate
- \blacktriangleright Where it is simpler to simulate random variables from g

Accept–Reject Methods Accept–Reject Algorithm

 \blacktriangleright The only constraints we impose on this candidate density g \triangleright f and g have compatible supports (i.e., $g(x) > 0$ when $f(x) > 0$). \triangleright There is a constant M with $f(x)/g(x) \leq M$ for all x.

 \blacktriangleright X \sim f can be simulated as follows.

 \triangleright Generate $Y \sim g$ and, independently, generate $U \sim \mathcal{U}_{[0,1]}$.

$$
\triangleright \text{ If } U \le \frac{1}{M} \frac{f(Y)}{g(Y)}, \text{ set } X = Y.
$$

 \triangleright If the inequality is not satisfied, we then discard Y and U and start again.

- Note that $M = \sup_x \frac{f(x)}{q(x)}$
- \blacktriangleright P(Accept) = $\frac{1}{M}$, Expected Waiting Time = M

Accept–Reject Algorithm R Implementation

Succinctly, the Accept–Reject Algorithm is

Accept–Reject Method

- 1. Generate $Y \sim g$, $U \sim \mathcal{U}_{[0,1]}$;
- 2. Accept $X = Y$ if $U \leq f(Y)/Mg(Y)$;
- 3. Return to 1 otherwise.

 \triangleright R implementation: If randg generates from g

```
> u=runif(1)*M
> y=randg(1)
> while (u>f(y)/g(y))
{
    u=runif(1)*My = randg(1)}
```
 \blacktriangleright Produces a single generation y from f

Accept–Reject Algorithm Normals from Double Exponentials

► Candidate
$$
Y \sim \frac{1}{2} \exp(-|y|)
$$

$$
\sum_{\substack{1 \ \sqrt{2\pi} \\ 2 \text{ exp}(-y^2/2) \\ \frac{1}{2} \exp(-|y|) \\ 1}} \sum_{\substack{1 \ \sqrt{2\pi} \\ 2 \exp(-|y|) \\ 1 \ \frac{1}{2} \exp(-|y|)
$$

 \triangleright Maximum at $y=1$

$$
\blacktriangleright \text{Accept } Y \text{ if } U \le \exp(-.5Y^2 + |Y| - .5)
$$

 \blacktriangleright Look at R code

Accept–Reject Algorithm Theory

- ! Why does this method work?
- ! A straightforward probability calculation shows

$$
P(Y \le x | \text{ Accept }) = P\left(Y \le x | U \le \frac{f(Y)}{Mg(Y)}\right) = P(X \le x)
$$

 \triangleright Simulating from g, the output of this algorithm is exactly distributed from f.

 $\overline{4}$

▶ The Accept–Reject method is applicable in any dimension

- \blacktriangleright As long as g is a density over the same space as f.
- \triangleright Only need to know f/g up to a constant
- \triangleright Only need an upper bound on M

Histogram of v

Histogram of Y

Histogram of Y

v

Y

Accept–Reject Algorithm Betas from Betas-Details

- \blacktriangleright Beta density $\propto x^a(1-x)^b$
- \blacktriangleright Can generate if a and b integers
- If not, use candidate with a_1 and b_1 integers

$$
\frac{y^{a}(1-y)^{b}}{y^{a_1}(1-y)^{b_1}}
$$
 maximized at $y = \frac{a - a_1}{a - a_1 + b - b_1}$

 \triangleright Need $a_1 < a$ and $b_1 < b$

- ! Efficiency ↑ as the candidate gets closer to the target
- ▶ Look at R code

Accept–Reject Algorithm **Comments**

!Some key properties of the Accept–Reject algorithm::

1. Only the ratio f/M is needed

 \triangleright So the algorithm does not depend on the normalizing constant.

- 2. The bound $f \leq Mg$ need not be tight
	- \triangleright Accept–Reject is valid, but less efficient, if M is replaced with a larger constant.
- 3. The probability of acceptance is $1/M$
	- \triangleright So M should be as small as possible for a given computational effort.

Chapter 3: Monte Carlo Integration

"Every time I think I know what's going on, suddenly there's another layer of complications. I just want this damn thing solved."

> John Scalzi The Last Colony

This Chapter

- \blacktriangleright This chapter introduces the major concepts of Monte Carlo methods
- The validity of Monte Carlo approximations relies on the Law of Large Numbers
- \blacktriangleright The versatility of the representation of an integral as an expectation

Monte Carlo Integration Introduction

 \blacktriangleright We will be concerned with evaluating integrals of the form

$$
\int_{\mathcal{X}} h(x) f(x) \, \mathrm{d}x,
$$

 \triangleright f is a density

 \triangleright We can produce an almost infinite number of random variables from f

• We apply probabilistic results

 \triangleright Law of Large Numbers

 \triangleright Central Limit Theorem

 \blacktriangleright The Alternative - Deterministic Numerical Integration

- \triangleright R functions area and integrate
- \triangleright OK in low (one) dimensions
- \triangleright Usually needs some knowledge of the function

Classical Monte Carlo Integration The Monte Carlo Method

! The generic problem: Evaluate

$$
\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) f(x) dx,
$$

 $\triangleright X$ takes its values in $\mathcal X$

! The Monte Carlo Method

 \triangleright Generate a sample (X_1,\ldots,X_n) from the density f

 \triangleright Approximate the integral with

$$
\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) ,
$$

Classical Monte Carlo Integration Validating the Monte Carlo Method

\blacktriangleright The Convergence

$$
\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) \to \int_{\mathcal{X}} h(x) f(x) dx = \mathbb{E}_f[h(X)]
$$

 \triangleright Is valid by the Strong Law of Large Numbers

 \blacktriangleright When $h^2(X)$ has a finite expectation under f,

$$
\frac{\overline{h}_n - \mathbb{E}_f[h(X)]}{\sqrt{v_n}} \to \mathcal{N}(0, 1)
$$

 \triangleright Follows from the Central Limit Theorem

$$
\triangleright v_n = \frac{1}{n^2} \sum_{j=1}^n [h(x_j) - \overline{h}_n]^2.
$$

Classical Monte Carlo Integration A Caution

! The confidence band produced in this figure is not ^a 95% confidence band in the classical sense

 \blacktriangleright They are Confidence Intervals were you to stop at a chosen number of iterations

Classical Monte Carlo Integration **Comments**

- $\overline{4}$
	- \blacktriangleright The evaluation of the Monte Carlo error is a bonus
	- It assumes that v_n is a proper estimate of the variance of \overline{h}_n
	- If v_n does not converge, converges too slowly, a CLT may not apply

Classical Monte Carlo Integration Another Example

! Normal Probability

$$
\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{x_i \le t} \to \Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy
$$

- \triangleright The exact variance $\Phi(t)[1 \Phi(t)]/n$
- \triangleright Conservative: Var ≈ 1/4*n*
- \triangleright For a precision of four decimals \triangleright Want 2 × $\sqrt{1/4n}$ ≤ 10⁻⁴ simulations \triangleright Take $n = (10^4)^2 = 10^8$
- ! This method breaks down for tail probabilities

Importance Sampling Introduction

! Importance sampling is based on an alternative formulation of the SLLN

$$
\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[\frac{h(X)f(X)}{g(X)} \right];
$$

 \triangleright f is the target density

 \triangleright g is the candidate density

D Sound Familiar?

Importance Sampling Introduction

! Importance sampling is based on an alternative formulation of the SLLN

$$
\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[\frac{h(X)f(X)}{g(X)} \right];
$$

 \triangleright f is the target density

 \triangleright g is the candidate density

 \triangleright Sound Familiar? – Just like Accept–Reject

 \blacktriangleright So

$$
\frac{1}{n} \sum_{j=1}^{n} \frac{f(X_j)}{g(X_j)} h(X_j) \to \mathbb{E}_f[h(X)]
$$

▶ As long as

 $\triangleright \text{Var}\left(h(X)f(X)/g(X)\right) < \infty$ \triangleright supp (g) \supset supp $(h \times f)$

Importance Sampling Revisiting Normal Tail Probabilities

 $\blacktriangleright Z \sim \mathcal{N}(0, 1)$ and we are interested in the probability $P(Z > 4.5)$

 \triangleright > pnorm(-4.5,log=T) $[1] -12.59242$

► Simulating $Z^{(i)} \sim \mathcal{N}(0, 1)$ only produces a hit once in about 3 million iterations! \triangleright Very rare event for the normal

 \triangleright Not-so-rare for a distribution sitting out there!

 \blacktriangleright Take $g = \mathcal{E}xp(1)$ truncated at 4.5:

$$
g(y) = \frac{e^{-y}}{\int_{4.5}^{\infty} e^{-x} dx} = e^{-(y-4.5)},
$$

• The IS estimator is

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{f(Y^{(i)})}{g(Y^{(i)})} = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{-Y_i^2/2 + Y_i - 4.5}}{\sqrt{2\pi}}
$$
 R code

Importance Sampling **Comments**

! Importance sampling has little restriction on the choice of the candidate

- \blacktriangleright g can be chosen from distributions that are easy to simulate \triangleright Or efficient in the approximation of the integral.
- \blacktriangleright Moreover, the same sample (generated from g) can be used repeatedly \triangleright Not only for different functions h but also for different densities f .
Importance Sampling Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

 \blacktriangleright Have an observation x from a beta $\mathcal{B}(\alpha, \beta)$ distribution,

$$
x \sim \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbb{I}_{[0,1]}(x)
$$

 \blacktriangleright There exists a family of conjugate priors on (α, β) of the form

$$
\pi(\alpha,\beta) \propto \left\{ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda} x_0^{\alpha} y_0^{\beta},
$$

where λ , x_0 , y_0 are hyperparameters,

• The posterior is then equal to

$$
\pi(\alpha,\beta|x) \propto \left\{ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda+1} [xx_0]^{\alpha} [(1-x)y_0]^{\beta}.
$$

Importance Sampling Easy Model - Difficult Distribution -2

 \blacktriangleright The posterior distribution is intractable

$$
\pi(\alpha,\beta|x) \propto \left\{ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda+1} [xx_0]^{\alpha} [(1-x)y_0]^{\beta}.
$$

 \triangleright Difficult to deal with the gamma functions

 \triangleright Simulating directly from $\pi(\alpha, \beta|x)$ is impossible.

 \blacktriangleright What candidate to use?

Importance Sampling Easy Model - Difficult Distribution – 3

- \blacktriangleright Try a Bivariate Student's T (or Normal)
- \blacktriangleright Trial and error

 \triangleright Student's $\mathcal{T}(3, \mu, \Sigma)$ distribution with $\mu = (50, 45)$ and

$$
\Sigma = \begin{pmatrix} 220 & 190 \\ 190 & 180 \end{pmatrix}
$$

 \triangleright Produce a reasonable fit

 \triangleright R code

! Note that we are using the fact that

$$
X \sim f(x) \Rightarrow \Sigma^{1/2} X + \mu \sim f\left((x - \mu)'\Sigma^{-1}(x - \mu)\right)
$$

Importance Sampling Easy Model - Difficult Distribution – Posterior Means

 \blacktriangleright The posterior mean of α is

$$
\int \int \alpha \pi(\alpha, \beta | x) d\alpha d\beta = \int \int \left[\alpha \frac{\pi(\alpha, \beta | x)}{g(\alpha, \beta)} \right] g(\alpha, \beta) d\alpha d\beta \approx \frac{1}{M} \sum_{i=1}^{M} \alpha_i \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}
$$

where

$$
\triangleright \pi(\alpha, \beta | x) \propto \left\{ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda + 1} [xx_0]^{\alpha} [(1 - x) y_0]^{\beta}
$$

$$
\triangleright g(\alpha, \beta) = \mathcal{T}(3, \mu, \Sigma)
$$

 \blacktriangleright Note that $\pi(\alpha, \beta|x)$ is not normalized, so we have to calculate

$$
\frac{\int \int \alpha \pi(\alpha, \beta | x) d\alpha d\beta}{\int \int \pi(\alpha, \beta | x) d\alpha d\beta} \approx \frac{\sum_{i=1}^{M} \alpha_i \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}}{\sum_{i=1}^{M} \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}}
$$

• The same samples can be used for every posterior expectation

 \blacktriangleright R code

Importance Sampling Probit Analysis

Example: Probit posterior importance sampling approximation

 \triangleright y are binary variables, and we have covariates $x \in \mathbb{R}^p$ such that $Pr(y = 1|x) = 1 - Pr(y = 0|x) = \Phi(x^T\beta), \quad \beta \in \mathbb{R}^p$.

 \blacktriangleright We return to the dataset Pima.tr, $x=\text{BMI}$

 \blacktriangleright A GLM estimation of the model is (using centered x)

 $\text{Pglm}(formula = y \times x, family = binomial(link = "probability))$

```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.44957 0.09497 -4.734 2.20e-06 ***
x 0.06479 0.01615 4.011 6.05e-05 ***
---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
So BMI has a significant impact on the possible presence of diabetes.
```
Importance Sampling Bayesian Probit Analysis

- ! From ^a Bayesian perspective, we use ^a vague prior $\triangleright \beta = (\beta_1, \beta_2)$, each having a $\mathcal{N}(0, 100)$ distribution
- \blacktriangleright With Φ the normal cdf, the posterior is proportional to \prod $\prod_{i=1}^{n} \left[\Phi(\beta_1 + (x_i - \bar{x})\beta_2 \right]^{y_i} \left[\Phi(-\beta_1 - (x_i - \bar{x})\beta_2 \right]^{1-y_i} \times e^{-\frac{\beta_1^2 + \beta_2^2}{2 \times 100}}$ $i=1$

• Level curves of posterior ! MLE in the center \blacktriangleright R code

Importance Sampling Probit Analysis Importance Weights

- ! Normal candidate centered at the MLE no finite variance guarantee
- \blacktriangleright The importance weights are rather uneven, if not degenerate

 \blacktriangleright Right side = reweighted candidate sample (R code)

Somewhat of a failure

Chapter 5: Monte Carlo Optimization

"He invented ^a game that allowed players to predict the outcome?" Susanna Gregory To Kill or Cure

This Chapter

- \blacktriangleright Two uses of computer-generated random variables to solve optimization problems.
- \blacktriangleright The first use is to produce stochastic search techniques
	- \triangleright To reach the maximum (or minimum) of a function
	- \triangleright Avoid being trapped in local maxima (or minima)
	- \triangleright Are sufficiently attracted by the global maximum (or minimum).
- \blacktriangleright The second use of simulation is to approximate the function to be optimized.

Monte Carlo Optimization Introduction

- ! Optimization problems can mostly be seen as one of two kinds: \triangleright Find the extrema of a function $h(\theta)$ over a domain Θ \triangleright Find the solution(s) to an implicit equation $g(\theta) = 0$ over a domain Θ .
- The problems are exchangeable

 \triangleright The second one is a minimization problem for a function like $h(\theta) = g^2(\theta)$ \triangleright while the first one is equivalent to solving $\partial h(\theta)/\partial \theta = 0$

• We only focus on the maximization problem

Monte Carlo Optimization Deterministic or Stochastic

! Similar to integration, optimization can be deterministic or stochastic

- ! Deterministic: performance dependent on properties of the function \triangleright such as convexity, boundedness, and smoothness
- Stochastic (simulation)
	- \triangleright Properties of h play a lesser role in simulation-based approaches.
- \blacktriangleright Therefore, if h is complex or Θ is irregular, chose the stochastic approach.

Monte Carlo Optimization Numerical Optimization

 \triangleright R has several embedded functions to solve optimization problems \triangleright The simplest one is **optimize** (one dimensional)

Example: Maximizing a Cauchy likelihood $\mathcal{C}(\theta, 1)$

 \blacktriangleright When maximizing the likelihood of a Cauchy $\mathcal{C}(\theta, 1)$ sample,

$$
\ell(\theta | x_1, \ldots, x_n) = \prod_{i=1}^n \frac{1}{1 + (x_i - \theta)^2},
$$

 \blacktriangleright The sequence of maxima (MLEs) $\rightarrow \theta^* = 0$ when $n \rightarrow \infty$.

! But the journey is not ^a smooth one...

Έ

Monte Carlo Optimization Newton-Raphson

! Similarly, nlm is ^a generic ^R function using the Newton–Raphson method

▶ Based on the recurrence relation

$$
\theta_{i+1} = \theta_i - \left[\frac{\partial^2 h}{\partial \theta \partial \theta^{\mathrm{T}}}(\theta_i)\right]^{-1} \frac{\partial h}{\partial \theta}(\theta_i)
$$

 \blacktriangleright Where the matrix of the second derivatives is called the *Hessian*

 \triangleright This method is perfect when h is quadratic \triangleright But may also deteriorate when h is highly nonlinear

 \triangleright It also obviously depends on the starting point θ_0 when h has several minima.

Monte Carlo Optimization Newton-Raphson; Mixture Model Likelihood

 \blacktriangleright Bimodal Mixture Model Likelihood $\frac{1}{4} \mathcal{N}(\mu_1, 1) + \frac{3}{4} \mathcal{N}(\mu_2, 1)$

- ! Sequences go to the closest mode
- \triangleright Starting point (-1, -1) has a steep gradient
	- \triangleright Bypasses the main mode ($-0.68, 1.98$)
	- \triangleright Goes to other mode (lower likelihood)

Histogram of maxlist

Stochastic search Stochastic Gradient Methods

- ! Generating direct simulations from the target can be difficult.
- ! Different stochastic approach to maximization
	- \triangleright Explore the surface in a local manner. \triangleright A Markov Chain

 \triangleright Can use $\theta_{j+1} = \theta_j + \epsilon_j$ \triangleright The random component ϵ_i can be arbitrary

• Can also use features of the function: Newton-Raphson Variation

$$
\theta_{j+1} = \theta_j + \alpha_j \nabla h(\theta_j) , \qquad \alpha_j > 0 ,
$$

 \triangleright Where $\nabla h(\theta_i)$ is the gradient $\triangleright \alpha_j$ the step size

Stochastic search Stochastic Gradient Methods-2

\blacktriangleright In difficult problems

 \triangleright The gradient sequence will most likely get stuck in a local extremum of h.

! Stochastic Variation

$$
\nabla h(\theta_j) \approx \frac{h(\theta_j + \beta_j \zeta_j) - h(\theta_j + \beta_j \zeta_j)}{2\beta_j} \zeta_j = \frac{\Delta h(\theta_j, \beta_j \zeta_j)}{2\beta_j} \zeta_j,
$$

 $\triangleright (\beta_i)$ is a second decreasing sequence

 $\triangleright \zeta_j$ is uniform on the unit sphere $||\zeta|| = 1$.

\blacktriangleright We then use

$$
\theta_{j+1} = \theta_j + \frac{\alpha_j}{2\beta_j} \Delta h(\theta_j, \beta_j \zeta_j) \zeta_j
$$

Stochastic Search A Difficult Minimization

 \blacktriangleright Many Local Minima \blacktriangleright Global Min at $(0,0)$ \blacktriangleright Code in the text

Stochastic Search A Difficult Minimization – 2

- $\triangleright \alpha \downarrow 0$ slowly, $\sum_j \alpha_j = \infty$
- \blacktriangleright $\beta \downarrow 0$ more slowly, $\sum_j (\alpha_j/\beta_j)^2 < \infty$
- \blacktriangleright Scenarios 1-2: Not enough energy
- ! Scenarios 3-4: Good

Simulated Annealing Introduction

- ! This name is borrowed from Metallurgy:
- \blacktriangleright A metal manufactured by a slow decrease of temperature (*annealing*) \triangleright Is stronger than a metal manufactured by a fast decrease of temperature.
- The fundamental idea of simulated annealing methods
	- \triangleright A change of scale, or temperature
	- \triangleright Allows for faster moves on the surface of the function h to maximize.
	- \triangleright Rescaling partially avoids the trapping attraction of local maxima.
- \triangleright As T decreases toward 0, the values simulated from this distribution become concentrated in ^a narrower and narrower neighborhood of the local maxima of h

Simulated Annealing Metropolis Algorithm/Simulated Annealing

- Simulation method proposed by Metropolis $et \ al.$ (1953)
- Starting from θ_0 , ζ is generated from

 $\zeta \sim$ Uniform in a neighborhood of θ_0 .

• The new value of θ is generated as

$$
\theta_1 = \begin{cases} \zeta & \text{with probability } \rho = \exp(\Delta h/T) \wedge 1 \\ \theta_0 & \text{with probability } 1 - \rho, \end{cases}
$$

 $\circ \, \Delta h = h(\zeta) - h(\theta_0)$

- \circ If $h(\zeta) \geq h(\theta_0)$, ζ is accepted
- \circ If $h(\zeta) < h(\theta_0)$, ζ may still be accepted
- This allows escape from local maxima

Simulated Annealing Metropolis Algorithm - Comments

- Simulated annealing typically modifies the temperature T at each iteration
- It has the form
- 1. Simulate ζ from an instrumental distribution with density $g(|\zeta - \theta_i|)$;
- 2. Accept $\theta_{i+1} = \zeta$ with probability

$$
\rho_i = \exp\{\Delta h_i/T_i\} \wedge 1;
$$

take $\theta_{i+1} = \theta_i$ otherwise.

- 3. Update T_i to T_{i+1} .
	- All positive moves accepted
	- \bullet As $T \downarrow 0$

◦ Harder to accept downward moves ◦ No big downward moves

• Not a Markov Chain - difficult to analyze

Simulated Annealing Simple Example

- \blacktriangleright Trajectory: $T_i = \frac{1}{(1+i)^2}$
- ► Log trajectory also works
- ! Can Guarantee Finding Global Max
- \blacktriangleright R code

Simulated Annealing Normal Mixture

- \blacktriangleright Previous normal mixture \blacktriangleright Most sequences find max
- \blacktriangleright They visit both modes

Stochastic Approximation Introduction

- \blacktriangleright We now consider methods that work with the objective function h \triangleright Rather than being concerned with fast exploration of the domain Θ .
- ! Unfortunately, the use of those methods results in an additional level of error \triangleright Due to this approximation of h.
- ! But, the objective function in many statistical problems can be expressed as $\triangleright h(x) = \mathbb{E}[H(x, Z)]$
	- \triangleright This is the setting of so-called missing-data models

Stochastic Approximation Optimizing Monte Carlo Approximations

If $h(x) = \mathbb{E}[H(x, Z)]$, a Monte Carlo approximation is

$$
\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{m} H(x, z_i),
$$

 $\triangleright Z_i$'s are generated from the conditional distribution $f(z|x)$.

 \blacktriangleright This approximation yields a convergent estimator of $h(x)$ for every value of x

- \triangleright This is a *pointwise convergent estimator*
- \triangleright Its use in optimization setups is not recommended
- \triangleright Changing sample of Z_i 's \Rightarrow unstable sequence of evaluations
- \triangleright And a rather noisy approximation to arg max $h(x)$

Stochastic Approximation Bayesian Probit

Example: Bayesian analysis of ^a simple probit model

 $\blacktriangleright Y \in \{0,1\}$ has a distribution depending on a covariate X: $P_{\theta}(Y = 1 | X = x) = 1 - P_{\theta}(Y = 0 | X = x) = \Phi(\theta_0 + \theta_1 x),$

 \triangleright Illustrate with Pima.tr dataset, Y = diabetes indicator, X = BMI

! Typically infer from the marginal posterior $\arg \max_{\theta_0} \int \prod_{i=1} \Phi(\theta_0 + \theta_1 x_n)^{y_i} \Phi(-\theta_0 - \theta_1 x_n)^{1-y_i} d\theta_1 = \arg \max_{\theta_0} h(\theta_0)$

 \triangleright For a flat prior on θ and a sample (x_1, \ldots, x_n) .

Stochastic Approximation Bayesian Probit – Importance Sampling

- \blacktriangleright No analytic expression for h
- \blacktriangleright The conditional distribution of θ_1 given θ_0 is also nonstandard \triangleright Use importance sampling with a t distribution with 5 df \triangleright Take $\mu = 0.1$ and $\sigma = 0.03$ (MLEs)
- ! Importance Sampling Approximation

$$
\widehat{h}_0(\theta_0) = \frac{1}{M} \sum_{m=1}^M \prod_{i=1} \Phi(\theta_0 + \theta_1^m x_n)^{y_i} \Phi(-\theta_0 - \theta_1^m x_n)^{1-y_i} \mathfrak{t}_5(\theta_1^m; \mu, \sigma)^{-1},
$$

Stochastic Approximation Importance Sampling Evaluation

 \triangleright Plotting this approximation of h with t samples simulated for each value of θ_0

 \triangleright The maximization of the represented \widehat{h} h function is not to be trusted as an approximation to the maximization of h .

 \triangleright But, if we use the same t sample for all values of θ_0 \triangleright We obtain a much smoother function

 \blacktriangleright We use importance sampling based on a *single* sample of Z_i 's \triangleright Simulated from an importance function $g(z)$ for all values of x \triangleright Estimate h with

$$
\hat{h}_m(x) = \frac{1}{m} \sum_{i=1}^m \frac{f(z_i|x)}{g(z_i)} H(x, z_i).
$$

Stochastic Approximation Importance Sampling Likelihood Representation

R code: Run pimax(25) from mcsm

Stochastic Approximation **Comments**

• This approach is not absolutely fool-proof \triangleright The precision of \hat{h} $m(x)$ has no reason to be independent of x \triangleright The number m of simulations has to reflect the most varying case.

! As in every importance sampling experiment \triangleright The choice of the candidate g is influential \triangleright In obtaining a good (or a disastrous) approximation of $h(x)$.

 \blacktriangleright Checking for the finite variance of the ratio $f(z_i|x)H(x, z_i)/g(z_i)$ \triangleright Is a minimal requirement in the choice of g

Missing-Data Models and Demarginalization Introduction

- \blacktriangleright Missing data models are special cases of the representation $h(x) = \mathbb{E}[H(x, Z)]$
- ! These are models where the density of the observations can be expressed as

$$
g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \, \mathrm{d}z.
$$

- This representation occurs in many statistical settings
	- \triangleright Censoring models and mixtures
	- \triangleright Latent variable models (tobit, probit, arch, stochastic volatility, etc.)
	- \triangleright Genetics: Missing SNP calls

Missing-Data Models and Demarginalization Mixture Model

Example: Normal mixture model as ^a missing-data model

- Start with a sample (x_1, \ldots, x_n)
- lacktriangleright Introduce a vector $(z_1,\ldots,z_n) \in \{1,2\}^n$ such that $P_{\theta}(Z_i = 1) = 1 - P_{\theta}(Z_i = 2) = 1/4, \quad X_i | Z_i = z \sim \mathcal{N}(\mu_z, 1),$

 \blacktriangleright The (observed) likelihood is then obtained as $\mathbb{E}[H(\mathbf{x},\mathbf{Z})]$ for $H(\mathbf{x},\mathbf{z}) \propto \ \prod$ $i; z_i = 1$ $\frac{1}{4} \exp \left\{ -(x_i - \mu_1)^2/2 \right\} \prod$ $i; z_i = 2$ $\frac{3}{4} \exp \left\{ -(x_i - \mu_2)^2/2 \right\}$,

 \blacktriangleright We recover the mixture model

$$
\frac{1}{4}\mathcal{N}(\mu_1, 1) + \frac{3}{4}\mathcal{N}(\mu_2, 1)
$$

 \triangleright As the marginal distribution of X_i .

Missing-Data Models and Demarginalization Censored–Data Likelihood

Example: Censored–data likelihood

! Censored data may come from experiments

 \triangleright Where some potential observations are replaced with a lower bound \triangleright Because they take too long to observe.

- \blacktriangleright Suppose that we observe Y_1, \ldots, Y_m , iid, from $f(y \theta)$ \triangleright And the $(n - m)$ remaining $(Y_{m+1},...,Y_n)$ are censored at the threshold a.
- The corresponding likelihood function is

$$
L(\theta|\mathbf{y}) = [1 - F(a - \theta)]^{n-m} \prod_{i=1}^{m} f(y_i - \theta),
$$

 $\triangleright F$ is the cdf associated with f

Missing-Data Models and Demarginalization Recovering the Observed Data Likelihood

If we had observed the last $n - m$ values

 \triangleright Say $\mathbf{z} = (z_{m+1},...,z_n)$, with $z_i \ge a$ $(i = m+1,...,n)$,

 \triangleright We could have constructed the (complete data) likelihood

$$
L^{c}(\theta|\mathbf{y},\mathbf{z}) = \prod_{i=1}^{m} f(y_i - \theta) \prod_{i=m+1}^{n} f(z_i - \theta).
$$

lacktriangleright Note that

$$
L(\theta|\mathbf{y}) = \mathbb{E}[L^c(\theta|\mathbf{y}, \mathbf{Z})] = \int_{\mathcal{Z}} L^c(\theta|\mathbf{y}, \mathbf{z}) k(\mathbf{z}|\mathbf{y}, \theta) \, d\mathbf{z},
$$

- \triangleright Where $k(\mathbf{z}|\mathbf{y}, \theta)$ is the density of the missing data
- \triangleright Conditional on the observed data
- \triangleright The product of the $f(z_i \theta)/[1 F(a \theta)]$'s
- \triangleright $f(z \theta)$ restricted to $(a, +\infty)$.
Missing-Data Models and Demarginalization **Comments**

 \blacktriangleright When we have the relationship

$$
g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \,dz.
$$

 \triangleright **Z** merely serves to simplify calculations

 \triangleright it does not necessarily have a specific meaning

 \blacktriangleright We have the complete-data likelihood $L^c(\theta|\mathbf{x}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z}|\theta)$ \triangleright The likelihood we would obtain

 \triangleright Were we to observe (\mathbf{x}, \mathbf{z}) , the complete data

! REMEMBER:

$$
g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) \, \mathrm{d}z.
$$

The EM Algorithm Introduction

• The EM algorithm is a deterministic optimization technique \triangleright Dempster, Laird and Rubin 1977

• Takes advantage of the missing data representation

- \triangleright Builds a sequence of easier maximization problems
- \triangleright Whose limit is the answer to the original problem
- \blacktriangleright We assume that we observe $X_1,\ldots,X_n \sim g(\mathbf{x}|\theta)$ that satisfies

$$
g(\mathbf{x}|\theta) = \int_{\mathcal{Z}} f(\mathbf{x}, \mathbf{z}|\theta) \, \mathrm{d}\mathbf{z},
$$

 \rhd And we want to compute $\hat{\theta}$ $\theta = \arg \max L(\theta | \mathbf{x}) = \arg \max g(\mathbf{x} | \theta).$ The EM Algorithm First Details

\n- With the relationship
$$
g(\mathbf{x}|\theta) = \int_{\mathcal{Z}} f(\mathbf{x}, \mathbf{z}|\theta) \, d\mathbf{z}
$$
,
\n- $\triangleright (\mathbf{X}, \mathbf{Z}) \sim f(\mathbf{x}, \mathbf{z}|\theta)$
\n

 \triangleright The conditional distribution of the missing data \mathbf{Z} \triangleright Given the observed data ${\bf x}$ is

$$
k(\mathbf{z}|\theta, \mathbf{x}) = f(\mathbf{x}, \mathbf{z}|\theta) / g(\mathbf{x}|\theta).
$$

! Taking the logarithm of this expression leads to the following relationship

$$
\underbrace{\log L(\theta|\mathbf{x})}_{\text{Obs. Data}} = \underbrace{\mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x}, \mathbf{Z})]}_{\text{Complete Data}} - \underbrace{\mathbb{E}_{\theta_0}[\log k(\mathbf{Z}|\theta, \mathbf{x})]}_{\text{Missing Data}},
$$

 \blacktriangleright Where the expectation is with respect to $k(\mathbf{z}|\theta_0, \mathbf{x})$.

In maximizing $\log L(\theta|\mathbf{x})$, we can ignore the last term

The EM Algorithm **Iterations**

• Denoting

$$
Q(\theta|\theta_0, \mathbf{x}) = \mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x}, \mathbf{Z})],
$$

- \blacktriangleright EM algorithm indeed proceeds by maximizing $Q(\theta|\theta_0, \mathbf{x})$ at each iteration \triangleright If $\hat{\theta}$ $\hat{\theta}_{(1)} = \mathrm{argmax} Q(\theta | \theta_0, \mathbf{x}), \, \hat{\theta}$ $\hat{\theta}_{(0)} \rightarrow \hat{\theta}$ $\theta_{(1)}$
- \blacktriangleright Sequence of estimators $\{\hat{\theta}$ $\{\theta_{(j)}\}$, where

$$
\hat{\theta}_{(j)} = \text{argmax} Q(\theta | \hat{\theta}_{(j-1)})
$$

- \blacktriangleright This iterative scheme
	- \triangleright Contains both an expectation step
	- \triangleright And a maximization step
	- \triangleright Giving the algorithm its name.

The EM Algorithm The Algorithm

Pick a starting value $\hat{\theta}$ $\theta_{(0)}$ and set $m=0$.

Repeat

1. Compute (the E-step)

$$
Q(\theta|\hat{\theta}_{(m)},\mathbf{x}) = \mathbb{E}_{\hat{\theta}_{(m)}}[\log L^{c}(\theta|\mathbf{x}, \mathbf{Z})]\,,
$$

where the expectation is with respect to $k(\mathbf{z}|\hat{\theta})$ $\theta_{(m)}, \textbf{x})$.

2. Maximize $Q(\theta|\hat{\theta})$ $\theta_{(m)}, \mathbf{x})$ in θ and take (*the M-step*)

$$
\hat{\theta}_{(m+1)} = \arg\max_{\theta} \ Q(\theta | \hat{\theta}_{(m)}, \mathbf{x})
$$

and set $m = m + 1$

until a fixed point is reached; i.e., $\hat{\theta}$ $\hat{\theta}_{(m+1)} = \hat{\theta}$ $\theta_{(m)}$.fixed point

The EM Algorithm Properties

 \triangleright Jensen's inequality \Rightarrow The likelihood increases at each step of the EM algorithm $L(\hat{\theta}$ $\hat{\theta}_{(j+1)}|{\mathbf x}) \geq L(\hat{\theta}$ $\theta_{(j)}|\mathbf{x}),$ \triangleright Equality holding if and only if $Q(\hat{\theta})$ $\hat{\theta}_{(j+1)}|\hat{\theta}$ $\hat{\theta}_{(j)},\mathbf{x})=Q(\hat{\theta}% _{(j)},\mathbf{x})Q(\hat{\theta}_{(j)}), \label{eq:theta}$ $\hat{\theta}_{(j)}|\hat{\theta}$ $\theta_{(j)}, \mathbf{x}).$

- Every limit point of an EM sequence $\{\hat{\theta}$ $\{\theta_{(j)}\}$ is a stationary point of $L(\theta|\mathbf{x})$ \triangleright Not necessarily the maximum likelihood estimator \triangleright In practice, we run EM several times with different starting points.
- ! Implementing the EM algorithm thus means being able to
	- (a) Compute the function $Q(\theta'|\theta, \mathbf{x})$
	- (b) Maximize this function.

The EM Algorithm Censored Data Example

• The complete-data likelihood is

$$
L^{c}(\theta | \mathbf{y}, \mathbf{z}) \propto \prod_{i=1}^{m} \exp\{-(y_i - \theta)^2/2\} \prod_{i=m+1}^{n} \exp\{-(z_i - \theta)^2/2\},
$$

! With expected complete-data log-likelihood

$$
Q(\theta|\theta_0, \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^m (y_i - \theta)^2 - \frac{1}{2} \sum_{i=m+1}^n \mathbb{E}_{\theta_0}[(Z_i - \theta)^2],
$$

 \triangleright the Z_i are distributed from a normal $\mathcal{N}(\theta, 1)$ distribution truncated at a.

 \blacktriangleright M-step (differentiating $Q(\theta|\theta_0, \mathbf{y})$ in θ and setting it equal to 0 gives ˆ $\hat{\theta} = \frac{m\bar{y} + (n-m)\mathbb{E}_{\theta'}[Z_1]}{2}$ n .

 \triangleright With $\mathbb{E}_{\theta}[Z_1] = \theta + \frac{\varphi(a-\theta)}{1-\Phi(a-\theta)},$

The EM Algorithm Censored Data MLEs

 \blacktriangleright EM sequence ˆ $\hat{\theta}^{(j+1)} = \frac{m}{\tau}$ $\, n$ $\bar{y}+$ $n-m$ $\frac{1}{n} - m\left[\hat{\theta}^{(j)} + \frac{\varphi(a - \hat{\theta}^{(j)})}{1 - \Phi(a - \hat{\theta}^{(j)})}\right]$ \blacktriangleright Climbing the Likelihood

 \blacktriangleright R code

The EM Algorithm Normal Mixture

! Normal Mixture Bimodal Likelihood

$$
Q(\theta'|\theta, \mathbf{x}) = -\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}_{\theta} \left[Z_i (x_i - \mu_1)^2 + (1 - Z_i)(x_i - \mu_2)^2 | \mathbf{x} \right].
$$

Solving the M-step then provides the closed-form expressions

$$
\mu'_1 = \mathbb{E}_{\theta} \left[\sum_{i=1}^n Z_i x_i | \mathbf{x} \right] / \mathbb{E}_{\theta} \left[\sum_{i=1}^n Z_i | \mathbf{x} \right]
$$

and

$$
\mu_2' = \mathbb{E}_{\theta} \left[\sum_{i=1}^n (1 - Z_i) x_i | \mathbf{x} \right] / \mathbb{E}_{\theta} \left[\sum_{i=1}^n (1 - Z_i) | \mathbf{x} \right].
$$

Since

$$
\mathbb{E}_{\theta}\left[Z_i|\mathbf{x}\right] = \frac{\varphi(x_i - \mu_1)}{\varphi(x_i - \mu_1) + 3\varphi(x_i - \mu_2)},
$$

The EM Algorithm Normal Mixture MLEs

 \blacktriangleright EM five times with various starting points \blacktriangleright Two out of five sequences \rightarrow higher mode \blacktriangleright Others \rightarrow lower mode

Monte Carlo EM Introduction

If computation $Q(\theta|\theta_0, \mathbf{x})$ is difficult, can use Monte Carlo

 \blacktriangleright For $\mathbf{Z}_1,\ldots,\mathbf{Z}_T \sim k(\mathbf{z}|\mathbf{x},\hat{\theta})$ $\theta_{(m)}$), maximize \hat{Q} $(\theta|\theta_0,\mathbf{x})=\frac{1}{T}\sum^{T}$ $i = 1$ $\log L^{c}(\theta|\textbf{x}, \textbf{z}_i)$

! Better: Use importance sampling

 \vartriangleright Since

$$
\arg \max_{\theta} L(\theta | \mathbf{x}) = \arg \max_{\theta} \log \frac{g(\mathbf{x} | \theta)}{g(\mathbf{x} | \theta_{(0)})} = \arg \max_{\theta} \log \mathbb{E}_{\theta_{(0)}} \left[\frac{f(\mathbf{x}, \mathbf{z} | \theta)}{f(\mathbf{x}, \mathbf{z} | \theta_{(0)})} \Big| \mathbf{x} \right],
$$

 \triangleright Use the approximation to the log-likelihood

$$
\log L(\theta|\mathbf{x}) \approx \frac{1}{T} \sum_{i=1}^{T} \frac{L^c(\theta|\mathbf{x}, \mathbf{z}_i)}{L^c(\theta_{(0)}|\mathbf{x}, \mathbf{z}_i)},
$$

Monte Carlo EM Genetics Data

Example: Genetic linkage.

• A classic example of the EM algorithm

 \triangleright Observations (x_1, x_2, x_3, x_4) are gathered from the multinomial distribution

$$
\mathcal{M}\left(n;\frac{1}{2}+\frac{\theta}{4},\frac{1}{4}(1-\theta),\frac{1}{4}(1-\theta),\frac{\theta}{4}\right).
$$

 \triangleright Estimation is easier if the x_1 cell is split into two cells

 \triangleright We create the augmented model

$$
(z_1, z_2, x_2, x_3, x_4) \sim \mathcal{M}\left(n; \frac{1}{2}, \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right)
$$

with $x_1 = z_1 + z_2$.

 \triangleright Complete-data likelihood: $\theta^{z_2+x_4}(1-\theta)^{x_2+x_3}$ \triangleright Observed-data likelihood: $(2+\theta)^{x_1}\theta^{x_4}(1-\theta)^{x_2+x_3}$

Monte Carlo EM Genetics Linkage Calculations

• The expected complete log-likelihood function is

$$
\mathbb{E}_{\theta_0}[(Z_2 + x_4)\log \theta + (x_2 + x_3)\log(1 - \theta)] = \left(\frac{\theta_0}{2 + \theta_0}x_1 + x_4\right)\log \theta + (x_2 + x_3)\log(1 - \theta),
$$

 \triangleright which can easily be maximized in θ , leading to the EM step

$$
\hat{\theta}_1 = \left\{ \frac{\theta_0 x_1}{2 + \theta_0} \right\} / \left\{ \frac{\theta_0 x_1}{2 + \theta_0} + x_2 + x_3 + x_4 \right\} .
$$

• Monte Carlo EM: Replace the expectation with $\triangleright \overline{z}_m = \frac{1}{m} \sum_{i=1}^m z_i, z_i \sim \mathcal{B}(x_1, \theta_0/(2 + \theta_0))$

• The MCEM step would then be

$$
\widehat{\widehat{\theta}}_1 = \frac{\overline{z}_m}{\overline{z}_m + x_2 + x_3 + x_4},
$$

which converges to $\hat{\theta}$ θ_1 as m grows to infinity.

Monte Carlo EM Genetics Linkage MLEs

 \blacktriangleright Note variation in MCEM sequence \blacktriangleright Can control with \uparrow simulations \blacktriangleright R code

Monte Carlo EM Random ^effect logit model

Example: Random ^effect logit model

• Random effect logit model,

 $\triangleright y_{ij}$ is distributed conditionally on one covariate x_{ij} as a logit model

$$
P(y_{ij} = 1 | x_{ij}, u_i, \beta) = \frac{\exp \{ \beta x_{ij} + u_i \}}{1 + \exp \{ \beta x_{ij} + u_i \}},
$$

 $\triangleright u_i \sim \mathcal{N}(0, \sigma^2)$ is an unobserved random effect.

 $P(D_1,\ldots,U_n)$ therefore corresponds to the missing data Z

Monte Carlo EM Random ^effect logit model likelihood

• For the complete data likelihood with $\theta = (\beta, \sigma)$,

$$
Q(\theta'|\theta, \mathbf{x}, \mathbf{y}) = \sum_{i,j} y_{ij} \mathbb{E}[\beta' x_{ij} + U_i | \beta, \sigma, \mathbf{x}, \mathbf{y}]
$$

-
$$
\sum_{i,j} \mathbb{E}[\log 1 + \exp{\beta' x_{ij} + U_i} | \beta, \sigma, \mathbf{x}, \mathbf{y}]
$$

-
$$
\sum_{i} \mathbb{E}[U_i^2 | \beta, \sigma, \mathbf{x}, \mathbf{y}]/2\sigma'^2 - n \log \sigma',
$$

 \triangleright it is impossible to compute the expectations in U_i .

- \blacktriangleright Were those available, the M-step would be difficult but feasible
- \blacktriangleright MCEM: Simulate the U_i 's conditional on $\beta, \sigma, \mathbf{x}, \mathbf{y}$ from

$$
\pi(u_i|\beta, \sigma, \mathbf{x}, \mathbf{y}) \propto \frac{\exp\left\{\sum_j y_{ij} u_i - u_i^2 / 2\sigma^2\right\}}{\prod_j \left[1 + \exp\left\{\beta x_{ij} + u_i\right\}\right]}
$$

Monte Carlo EM Random ^effect logit MLEs

- \blacktriangleright Top: Sequence of β 's from the MCEM algorithm
- ! Bottom: Sequence of completed likelihoods

\blacktriangleright MCEM sequence

- \triangleright Increases the number of Monte Carlo steps at each iteration
- \blacktriangleright MCEM algorithm
	- \triangleright Does not have EM monotonicity property