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Based on

• Introducing Monte Carlo Methods with R, 2009, Springer-Verlag

• Data and R programs for the course available at
http://www.stat.ufl.edu/ casella/IntroMonte/
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Chapter 1: Basic R Programming

“You’re missing the big picture,” he told her. “A good album should be
more than the sum of its parts.”

Ian Rankin

Exit Music

This Chapter

! We introduce the programming language R

! Input and output, data structures, and basic programming commands

! The material is both crucial and unavoidably sketchy
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Basic R Programming
Introduction

! This is a quick introduction to R

! There are entire books devoted to R

! R Reference Card

! available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf

! Take Heart!

! The syntax of R is simple and logical

! The best, and in a sense the only, way to learn R is through trial-and-error

! Embedded help commands help() and help.search()

! help.start() opens a Web browser linked to the local manual pages
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Basic R Programming
Why R ?

! There exist other languages, most (all?) of them faster than R, like Matlab, and
even free, like C or Python.

! The language combines a sufficiently high power (for an interpreted language)
with a very clear syntax both for statistical computation and graphics.

! R is a flexible language that is object-oriented and thus allows the manipulation
of complex data structures in a condensed and efficient manner.

! Its graphical abilities are also remarkable

! Possible interfacing with LATEXusing the package Sweave.
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Basic R Programming
Why R ?

! R offers the additional advantages of being a free and open-source system

! There is even an R newsletter, R-News

! Numerous (free) Web-based tutorials and user’s manuals

! It runs on all platforms: Mac, Windows, Linux and Unix

! R provides a powerful interface

! Can integrate programs written in other languages

! Such as C, C++, Fortran, Perl, Python, and Java.

! It is increasingly common to see people who develop new methodology simulta-
neously producing an R package

! Can interface with WinBugs
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Basic R Programming
Getting started

! Type ’demo()’ for some demos; demo(image) and demo(graphics)

! ’help()’ for on-line help, or ’help.start()’ for an HTML browser interface to help.

! Type ’q()’ to quit R.

! Additional packages can be loaded via the library command, as in

> library(combinat) # combinatorics utilities
> library(datasets) # The R Datasets Package

! There exist hundreds of packages available on the Web.

> install.package("mcsm")

! A library call is required each time R is launched
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Basic R Programming
R objects

! R distinguishes between several types of objects

! scalar, vector, matrix, time series, data frames, functions, or graphics.

! An R object is mostly characterized by a mode

! The different modes are

- null (empty object),
- logical (TRUE or FALSE),
- numeric (such as 3, 0.14159, or 2+sqrt(3)),
- complex, (such as 3-2i or complex(1,4,-2)), and
- character (such as ”Blue”, ”binomial”, ”male”, or "y=a+bx"),

! The R function str applied to any R object will show its structure.
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Basic R Programming
Interpreted

! R operates on those types as a regular function would operate on a scalar

! R is interpreted ⇒ Slow

! Avoid loops in favor of matrix mainpulations
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Basic R Programming – The vector class

> a=c(5,5.6,1,4,-5) build the object a containing a numeric vector
of dimension 5 with elements 5, 5.6, 1, 4, –5

> a[1] display the first element of a

> b=a[2:4] build the numeric vector b of dimension 3

with elements 5.6, 1, 4
> d=a[c(1,3,5)] build the numeric vector d of dimension 3

with elements 5, 1, –5
> 2*a multiply each element of a by 2

and display the result
> b%%3 provides each element of b modulo 3
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Basic R Programming
More vector class

> e=3/d build the numeric vector e of dimension 3
and elements 3/5, 3, –3/5

> log(d*e) multiply the vectors d and e term by term

and transform each term into its natural logarithm
> sum(d) calculate the sum of d

> length(d) display the length of d
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Basic R Programming
Even more vector class

> t(d) transpose d, the result is a row vector
> t(d)*e elementwise product between two vectors

with identical lengths
> t(d)%*%e matrix product between two vectors

with identical lengths
> g=c(sqrt(2),log(10)) build the numeric vector g of dimension 2

and elements
√

2, log(10)
> e[d==5] build the subvector of e that contains the

components e[i] such that d[i]=5
> a[-3] create the subvector of a that contains

all components of a but the third.
> is.vector(d) display the logical expression TRUE if

a vector and FALSE else
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Basic R Programming
Comments on the vector class

! The ability to apply scalar functions to vectors: Major Advantage of R.

! > lgamma(c(3,5,7))

! returns the vector with components (log Γ(3), log Γ(5), log Γ(7)).

! Functions that are specially designed for vectors include

sample, permn, order,sort, and rank

! All manipulate the order in which the components of the vector occur.

! permn is part of the combinat library

! The components of a vector can also be identified by names.

! For a vector x, names(x) is a vector of characters of the same length as x
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Basic R Programming
The matrix, array, and factor classes

! The matrix class provides the R representation of matrices.

! A typical entry is

> x=matrix(vec,nrow=n,ncol=p)

! Creates an n × p matrix whose elements are of the dimension np vector vec

! Some manipulations on matrices

! The standard matrix product is denoted by %*%,

! while * represents the term-by-term product.

! diag gives the vector of the diagonal elements of a matrix

! crossprod replaces the product t(x)%*%y on either vectors or matrices

! crossprod(x,y) more efficient

! apply is easy to use for functions operating on matrices by row or column
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Basic R Programming
Some matrix commands

> x1=matrix(1:20,nrow=5) build the numeric matrix x1 of dimension
5 × 4 with first row 1, 6, 11, 16

> x2=matrix(1:20,nrow=5,byrow=T) build the numeric matrix x2 of dimension
5 × 4 with first row 1, 2, 3, 4

> a=x1%*%t(x2) matrix product
> c=x1*x2 term-by-term product between x1 and x2

> dim(x1) display the dimensions of x1
> b[,2] select the second column of b
> b[c(3,4),] select the third and fourth rows of b
> b[-2,] delete the second row of b
> rbind(x1,x2) vertical merging of x1 and x2rbind(*)rbind
> cbind(x1,x2) horizontal merging of x1 and x2rbind(*)rbind
> apply(x1,1,sum) calculate the sum of each row of x1
> as.matrix(1:10) turn the vector 1:10 into a 10 × 1 matrix

! Lots of other commands that we will see throughout the course
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Basic R Programming
The list and data.frame classes

The Last One

! A list is a collection of arbitrary objects known as its components

> li=list(num=1:5,y="color",a=T) create a list with three arguments

! The last class we briefly mention is the data frame

! A list whose elements are possibly made of differing modes and attributes

! But have the same length

> v1=sample(1:12,30,rep=T) simulate 30 independent uniform {1, 2, . . . , 12}
> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 independent uniform {a, b, ...., j}
> v3=runif(30) simulate 30 independent uniform [0, 1]
> v4=rnorm(30) simulate 30 independent standard normals
> xx=data.frame(v1,v2,v3,v4) create a data frame

! R code
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Probability distributions in R

! R , or the web, has about all probability distributions

! Prefixes: p, d,q, r

Distribution Core Parameters Default Values
Beta beta shape1, shape2

Binomial binom size, prob

Cauchy cauchy location, scale 0, 1
Chi-square chisq df

Exponential exp 1/mean 1
F f df1, df2

Gamma gamma shape,1/scale NA, 1
Geometric geom prob

Hypergeometric hyper m, n, k

Log-normal lnorm mean, sd 0, 1
Logistic logis location, scale 0, 1
Normal norm mean, sd 0, 1
Poisson pois lambda

Student t df

Uniform unif min, max 0, 1
Weibull weibull shape
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Basic and not-so-basic statistics
t-test

! Testing equality of two means

> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)

One Sample t-test

data: x
t = -0.8168, df = 24, p-value = 0.4220
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.4915103 0.2127705

sample estimates:
mean of x

-0.1393699
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Basic and not-so-basic statistics
Correlation

! Correlation

> attach(faithful) #resident dataset
> cor.test(faithful[,1],faithful[,2])

Pearson’s product-moment correlation

data: faithful[, 1] and faithful[, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8756964 0.9210652

sample estimates:
cor

0.9008112

! R code
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Basic and not-so-basic statistics
Splines

! Nonparametric regression with loess function or using natural splines

! Relationship between nitrogen level in soil and abundance of a bacteria AOB

! Natural spline fit (dark)

! With ns=2 (linear model)

! Loess fit (brown) with span=1.25

! R code
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Basic and not-so-basic statistics
Generalized Linear Models

! Fitting a binomial (logistic) glm to the probability of suffering from diabetes for
a woman within the Pima Indian population

> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7935 -0.8368 -0.5033 1.0211 2.2531

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.49870 1.17459 -5.533 3.15e-08 ***

bmi 0.10519 0.02956 3.558 0.000373 ***

age 0.07104 0.01538 4.620 3.84e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 256.41 on 199 degrees of freedom

Residual deviance: 215.93 on 197 degrees of freedom

AIC: 221.93

Number of Fisher Scoring iterations: 4
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Basic and not-so-basic statistics
Generalized Linear Models – Comments

! Concluding with the significance both of the body mass index bmi and the age

! Other generalized linear models can be defined by using a different family value

> glm(y ~x, family=quasi(var="mu^2", link="log"))

! Quasi-Likelihood also

! Many many other procedures

! Time series, anova,...

! One last one
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Basic and not-so-basic statistics
Bootstrap

! The bootstrap procedure uses the empirical distribution as a substitute for the
true distribution to construct variance estimates and confidence intervals.

! A sample X1, . . . , Xn is resampled with replacement

! The empirical distribution has a finite but large support made of nn points

! For example, with data y, we can create a bootstrap sample y∗ using the code

> ystar=sample(y,replace=T)

! For each resample, we can calculate a mean, variance, etc
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Basic and not-so-basic statistics
Simple illustration of bootstrap

Bootstrap Means
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! A histogram of 2500 bootstrap means

! Along with the normal approximation

! Bootstrap shows some skewness

! R code
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Basic and not-so-basic statistics
Bootstrapping Regression

! The bootstrap is not a panacea

! Not always clear which quantity should be bootstrapped

! In regression, bootstrapping the residuals is preferred

! Linear regression
Yij = α + βxi + εij,

α and β are the unknown intercept and slope, εij are the iid normal errors

! The residuals from the least squares fit are given by

ε̂ij = yij − α̂ − β̂xi,

! We bootstrap the residuals

! Produce a new sample (ε̂∗ij)ij by resampling from the ε̂ij’s

! The bootstrap samples are then y∗ij = yij + ε̂∗ij
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Basic and not-so-basic statistics
Bootstrapping Regression – 2
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! Histogram of 2000 bootstrap samples

! We can also get confidence intervals

! R code
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Basic R Programming
Some Other Stuff

! Graphical facilities

! Can do a lot; see plot and par

! Writing new R functions

! h=function(x)(sin(x)^2+cos(x)^3)^(3/2)

! We will do this a lot

! Input and output in R

! write.table, read.table, scan

! Don’t forget the mcsm package
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Chapter 2: Random Variable Generation

“It has long been an axiom of mine that the little things are infinitely the
most important.”

Arthur Conan Doyle

A Case of Identity

This Chapter

! We present practical techniques that can produce random variables

! From both standard and nonstandard distributions

! First: Transformation methods

! Next: Indirect Methods - Accept–Reject
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Introduction

! Monte Carlo methods rely on

! The possibility of producing a supposedly endless flow of random variables

! For well-known or new distributions.

! Such a simulation is, in turn,

! Based on the production of uniform random variables on the interval (0, 1).

! We are not concerned with the details of producing uniform random variables

! We assume the existence of such a sequence
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Introduction
Using the R Generators

R has a large number of functions that will generate the standard random variables

> rgamma(3,2.5,4.5)

produces three independent generations from a G(5/2, 9/2) distribution

! It is therefore,

! Counter-productive

! Inefficient

! And even dangerous,

! To generate from those standard distributions

! If it is built into R , use it

! But....we will practice on these.

! The principles are essential to deal with distributions that are not built into R.
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Uniform Simulation

! The uniform generator in R is the function runif

! The only required entry is the number of values to be generated.

! The other optional parameters are min and max, with R code

> runif(100, min=2, max=5)

will produce 100 random variables U(2, 5).
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Uniform Simulation
Checking the Generator

! A quick check on the properties of this uniform generator is to

! Look at a histogram of the Xi’s,

! Plot the pairs (Xi,Xi+1)

! Look at the estimate autocorrelation function

! Look at the R code

> Nsim=10^4 #number of random numbers
> x=runif(Nsim)
> x1=x[-Nsim] #vectors to plot
> x2=x[-1] #adjacent pairs
> par(mfrow=c(1,3))
> hist(x)
> plot(x1,x2)
> acf(x)
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Uniform Simulation
Plots from the Generator
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! Histogram (left), pairwise plot (center), and estimated autocorrelation func-
tion (right) of a sequence of 104 uniform random numbers generated by runif.
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Uniform Simulation
Some Comments

! Remember: runif does not involve randomness per se.

! It is a deterministic sequence based on a random starting point.

! The R function set.seed can produce the same sequence.

> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)
> runif(5)
[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

! Setting the seed determines all the subsequent values
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The Inverse Transform

! The Probability Integral Transform

! Allows us to transform a uniform into any random variable

! For example, if X has density f and cdf F , then we have the relation

F (x) =

∫ x

−∞
f(t) dt,

and we set U = F (X) and solve for X

! Example 2.1

! If X ∼ Exp(1), then F (x) = 1 − e−x

! Solving for x in u = 1 − e−x gives x = − log(1 − u)
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Generating Exponentials

> Nsim=10^4 #number of random variables

> U=runif(Nsim)

> X=-log(U) #transforms of uniforms

> Y=rexp(Nsim) #exponentials from R

> par(mfrow=c(1,2)) #plots

> hist(X,freq=F,main="Exp from Uniform")

> hist(Y,freq=F,main="Exp from R")

! Histograms of exponential random variables

! Inverse transform (right)

! R command rexp (left)

! Exp(1) density on top
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Generating Other Random Variables From Uniforms

! This method is useful for other probability distributions

! Ones obtained as a transformation of uniform random variables

! Logistic pdf: f(x) = 1
β

e−(x−µ)/β

[1+e−(x−µ)/β ]2
, cdf: F (x) = 1

1+e−(x−µ)/β .

! Cauchy pdf: f(x) = 1
πσ

1

1+(x−µ
σ )2 , cdf: F (x) = 1

2 + 1
πarctan((x − µ)/σ).
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General Transformation Methods

! When a density f is linked in a relatively simple way

! To another distribution easy to simulate

! This relationship can be use to construct an algorithm to simulate from f

! If the Xi’s are iid Exp(1) random variables,

! Three standard distributions can be derived as

Y = 2
ν∑

j=1

Xj ∼ χ2
2ν , ν ∈ N

∗ ,

Y = β
a∑

j=1

Xj ∼ G(a, β) , a ∈ N
∗ ,

Y =

∑a
j=1 Xj

∑a+b
j=1 Xj

∼ Be(a, b) , a, b ∈ N
∗ ,

where N∗ = {1, 2, . . .}.
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General Transformation Methods
χ2

6 Random Variables

! For example, to generate χ2
6 random variables, we could use the R code

> U=runif(3*10^4)
> U=matrix(data=U,nrow=3) #matrix for sums
> X=-log(U) #uniform to exponential
> X=2* apply(X,2,sum) #sum up to get chi squares

! Not nearly as efficient as calling rchisq, as can be checked by the R code

> system.time(test1());system.time(test2())
user system elapsed
0.104 0.000 0.107
user system elapsed
0.004 0.000 0.004

! test1 corresponds to the R code above

! test2 corresponds to X=rchisq(10^4,df=6)
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General Transformation Methods
Comments

! These transformations are quite simple and will be used in our illustrations.

! However, there are limits to their usefulness,

! No odd degrees of freedom

! No normals

! For any specific distribution, efficient algorithms have been developed.

! Thus, if R has a distribution built in, it is almost always worth using
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General Transformation Methods
A Normal Generator

! Box–Muller algorithm - two normals from two uniforms

! If U1 and U2 are iid U[0,1]

! The variables X1 and X2

X1 =
√
−2 log(U1) cos(2πU2) , X2 =

√
−2 log(U1) sin(2πU2) ,

! Are iid N (0, 1) by virtue of a change of variable argument.

! The Box–Muller algorithm is exact, not a crude CLT-based approximation

! Note that this is not the generator implemented in R

! It uses the probability inverse transform

! With a very accurate representation of the normal cdf
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General Transformation Methods
Multivariate Normals

! Can simulate a multivariate normal variable using univariate normals

! Cholesky decomposition of Σ = AA′

! Y ∼ Np(0, I) ⇒ AY ∼ Np(0, Σ)

! There is an R package that replicates those steps, called rmnorm

! In the mnormt library

! Can also calculate the probability of hypercubes with the function sadmvn

> sadmvn(low=c(1,2,3),upp=c(10,11,12),mean=rep(0,3),var=B)
[1] 9.012408e-05
attr(,"error")
[1] 1.729111e-08

! B is a positive-definite matrix

! This is quite useful since the analytic derivation of this probability is almost always impossible.
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Discrete Distributions

! To generate discrete random variables we have an “all-purpose” algorithm.

! Based on the inverse transform principle

! To generate X ∼ Pθ, where Pθ is supported by the integers,

! We can calculate—the probabilities

! Once for all, assuming we can store them

p0 = Pθ(X ≤ 0), p1 = Pθ(X ≤ 1), p2 = Pθ(X ≤ 2), . . . ,

! And then generate U ∼ U[0,1] and take

X = k if pk−1 < U < pk.
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Discrete Distributions
Binomial

! Example To generate X ∼ Bin(10, .3)

! The probability values are obtained by pbinom(k,10,.3)

p0 = 0.028, p1 = 0.149, p2 = 0.382, . . . , p10 = 1 ,

! And to generate X ∼ P(7), take

p0 = 0.0009, p1 = 0.0073, p2 = 0.0296, . . . ,

! Stopping the sequence when it reaches 1 with a given number of decimals.

! For instance, p20 = 0.999985.

! Check the R code
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Discrete Distributions
Comments

! Specific algorithms are usually more efficient

! Improvement can come from a judicious choice of the probabilities first computed.

! For example, if we want to generate from a Poisson with λ = 100

! The algorithm above is woefully inefficient

! We expect most of our observations to be in the interval λ ± 3
√

λ

! For λ = 100 this interval is (70, 130)

! Thus, starting at 0 is quite wasteful

! A first remedy is to “ignore” what is outside of a highly likely interval

! In the current example P (X < 70) + P (X > 130) = 0.00268.
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Discrete Distributions
Poisson R Code

! R code that can be used to generate Poisson random variables for large values
of lambda.

! The sequence t contains the integer values in the range around the mean.

> Nsim=10^4; lambda=100
> spread=3*sqrt(lambda)
> t=round(seq(max(0,lambda-spread),lambda+spread,1))
> prob=ppois(t, lambda)
> X=rep(0,Nsim)
> for (i in 1:Nsim){
+ u=runif(1)
+ X[i]=t[1]+sum(prob<u)-1 }

! The last line of the program checks to see what interval the uniform random
variable fell in and assigns the correct Poisson value to X .
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Discrete Distributions
Comments

! Another remedy is to start the cumulative probabilities at the mode of the dis-
crete distribution

! Then explore neighboring values until the cumulative probability is almost 1.

! Specific algorithms exist for almost any distribution and are often quite fast.

! So, if R has it, use it.

! But R does not handle every distribution that we will need,
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Mixture Representations

! It is sometimes the case that a probability distribution can be naturally repre-
sented as a mixture distribution

! That is, we can write it in the form

f(x) =

∫

Y
g(x|y)p(y) dy or f(x) =

∑

i∈Y
pi fi(x) ,

! The mixing distribution can be continuous or discrete.

! To generate a random variable X using such a representation,

! we can first generate a variable Y from the mixing distribution

! Then generate X from the selected conditional distribution
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Mixture Representations
Generating the Mixture

! Continuous

f(x) =

∫

Y
g(x|y)p(y) dy ⇒ y ∼ p(y) and X ∼ f(x|y), then X ∼ f(x)

! Discrete

f(x) =
∑

i∈Y
pi fi(x) ⇒ i ∼ pi and X ∼ fi(x), then X ∼ f(x)

! Discrete Normal Mixture R code

! p1 ∗ N(µ1,σ1) + p2 ∗ N(µ2, σ2) + p3 ∗ N(µ3,σ3)
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Mixture Representations
Continuous Mixtures

! Student’s t density with ν degrees of freedom

X|y ∼ N (0, ν/y) and Y ∼ χ2
ν.

! Generate from a χ2
ν then from the corresponding normal distribution

! Obviously, using rt is slightly more efficient

! If X is negative binomial X ∼ N eg(n, p)

! X|y ∼ P(y) and Y ∼ G(n, β),

! R code generates from this mixture
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Accept–Reject Methods
Introduction

! There are many distributions where transform methods fail

! For these cases, we must turn to indirect methods

! We generate a candidate random variable

! Only accept it subject to passing a test

! This class of methods is extremely powerful.

! It will allow us to simulate from virtually any distribution.

! Accept–Reject Methods

! Only require the functional form of the density f of interest

! f = target, g=candidate

! Where it is simpler to simulate random variables from g
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Accept–Reject Methods
Accept–Reject Algorithm

! The only constraints we impose on this candidate density g

! f and g have compatible supports (i.e., g(x) > 0 when f(x) > 0).

! There is a constant M with f(x)/g(x) ≤ M for all x.

! X ∼ f can be simulated as follows.

! Generate Y ∼ g and, independently, generate U ∼ U[0,1].

! If U ≤ 1
M

f(Y )
g(Y ) , set X = Y .

! If the inequality is not satisfied, we then discard Y and U and start again.

! Note that M = supx
f(x)
g(x)

! P ( Accept ) = 1
M , Expected Waiting Time = M
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Accept–Reject Algorithm
R Implementation

Succinctly, the Accept–Reject Algorithm is

Accept–Reject Method

1. Generate Y ∼ g, U ∼ U[0,1];

2. Accept X = Y if U ≤ f(Y )/Mg(Y );

3. Return to 1 otherwise.

! R implementation: If randg generates from g

> u=runif(1)*M

> y=randg(1)

> while (u>f(y)/g(y))

{

u=runif(1)*M

y=randg(1)

}

! Produces a single generation y from f
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Accept–Reject Algorithm
Normals from Double Exponentials

! Candidate Y ∼ 1
2 exp(−|y|)

! Target X ∼ 1√
2π

exp(−x2/2)

1√
2π

exp(−y2/2)
1
2 exp(−|y|)

≤ 2√
2π

exp(1/2)

! Maximum at y = 1

! Accept Y if U ≤ exp(−.5Y 2 + |Y |− .5)

! Look at R code
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Accept–Reject Algorithm
Theory

! Why does this method work?

! A straightforward probability calculation shows

P (Y ≤ x| Accept ) = P
(
Y ≤ x|U ≤ f(Y )

Mg(Y )

)
= P (X ≤ x)

! Simulating from g, the output of this algorithm is exactly distributed from f .

!

! The Accept–Reject method is applicable in any dimension

! As long as g is a density over the same space as f .

! Only need to know f/g up to a constant

! Only need an upper bound on M
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Accept–Reject Algorithm
Betas from Uniforms

• Generate X ∼ beta(a, b).

• No direct method if a and b are not integers.

• Use a uniform candidate

• For a = 2.7 and b = 6.3
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Accept–Reject Algorithm
Betas from Betas

• Generate X ∼ beta(a, b).

• No direct method if a and b are not integers.

• Use a beta candidate

• For a = 2.7 and b = 6.3, Y ∼ beta(2, 6)
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Accept–Reject Algorithm
Betas from Betas-Details

! Beta density ∝ xa(1 − x)b

! Can generate if a and b integers

! If not, use candidate with a1 and b1 integers

ya(1 − y)b

ya1(1 − y)b1
maximized at y =

a − a1

a − a1 + b − b1

! Need a1 < a and b1 < b

! Efficiency ↑ as the candidate gets closer to the target

! Look at R code
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Accept–Reject Algorithm
Comments

!Some key properties of the Accept–Reject algorithm::

1. Only the ratio f/M is needed

! So the algorithm does not depend on the normalizing constant.

2. The bound f ≤ Mg need not be tight

! Accept–Reject is valid, but less efficient, if M is replaced with a larger
constant.

3. The probability of acceptance is 1/M

! So M should be as small as possible for a given computational effort.
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Chapter 3: Monte Carlo Integration

“Every time I think I know what’s going on, suddenly there’s another
layer of complications. I just want this damn thing solved.”

John Scalzi

The Last Colony

This Chapter

! This chapter introduces the major concepts of Monte Carlo methods

! The validity of Monte Carlo approximations relies on the Law of Large Numbers

! The versatility of the representation of an integral as an expectation
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Monte Carlo Integration
Introduction

! We will be concerned with evaluating integrals of the form∫

X
h(x) f(x) dx,

! f is a density

! We can produce an almost infinite number of random variables from f

! We apply probabilistic results

! Law of Large Numbers

! Central Limit Theorem

! The Alternative - Deterministic Numerical Integration

! R functions area and integrate

! OK in low (one) dimensions

! Usually needs some knowledge of the function
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Classical Monte Carlo Integration
The Monte Carlo Method

! The generic problem: Evaluate

Ef [h(X)] =

∫

X
h(x) f(x) dx,

! X takes its values in X

! The Monte Carlo Method

! Generate a sample (X1, . . . , Xn) from the density f

! Approximate the integral with

hn =
1

n

n∑

j=1

h(xj) ,
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Classical Monte Carlo Integration
Validating the Monte Carlo Method

! The Convergence

hn =
1

n

n∑

j=1

h(xj) →
∫

X
h(x) f(x) dx = Ef [h(X)]

! Is valid by the Strong Law of Large Numbers

! When h2(X) has a finite expectation under f ,

hn − Ef [h(X)]
√

vn
→ N (0, 1)

! Follows from the Central Limit Theorem

! vn = 1
n2

∑n
j=1 [h(xj) − hn]2.
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Classical Monte Carlo Integration
A First Example

! Look at the function

! h(x) = [cos(50x) + sin(20x)]2

! Monitoring Convergence

! R code



Monte Carlo Methods with R: Monte Carlo Integration [64]

Classical Monte Carlo Integration
A Caution

! The confidence band produced

in this figure is not a 95% con-

fidence band in the classical

sense

! They are Confidence Intervals were you to stop at a chosen number of iterations
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Classical Monte Carlo Integration
Comments

!

! The evaluation of the Monte Carlo error is a bonus

! It assumes that vn is a proper estimate of the variance of hn

! If vn does not converge, converges too slowly, a CLT may not apply
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Classical Monte Carlo Integration
Another Example

! Normal Probability

Φ̂(t) =
1

n

n∑

i=1

Ixi≤t → Φ(t) =

∫ t

−∞

1√
2π

e−y2/2dy

! The exact variance Φ(t)[1 − Φ(t)]/n

! Conservative: Var ≈ 1/4n

! For a precision of four decimals
! Want 2 ×

√
1/4n ≤ 10−4 simulations

! Take n = (104)2 = 108

! This method breaks down for tail probabilities
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Importance Sampling
Introduction

! Importance sampling is based on an alternative formulation of the SLLN

Ef [h(X)] =

∫

X
h(x)

f(x)

g(x)
g(x) dx = Eg

[
h(X)f(X)

g(X)

]
;

! f is the target density

! g is the candidate density

! Sound Familiar?
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Importance Sampling
Introduction

! Importance sampling is based on an alternative formulation of the SLLN

Ef [h(X)] =

∫

X
h(x)

f(x)

g(x)
g(x) dx = Eg

[
h(X)f(X)

g(X)

]
;

! f is the target density

! g is the candidate density

! Sound Familiar? – Just like Accept–Reject

! So
1

n

n∑

j=1

f(Xj)

g(Xj)
h(Xj) → Ef [h(X)]

! As long as

! Var (h(X)f(X)/g(X)) < ∞
! supp(g) ⊃ supp(h × f)
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Importance Sampling
Revisiting Normal Tail Probabilities

! Z ∼ N (0, 1) and we are interested in the probability P (Z > 4.5)

! > pnorm(-4.5,log=T)
[1] -12.59242

! Simulating Z(i) ∼ N (0, 1) only produces a hit once in about 3 million iterations!

! Very rare event for the normal

! Not-so-rare for a distribution sitting out there!

! Take g = Exp(1) truncated at 4.5:

g(y) =
e−y

∫∞
4.5 e−xdx

= e−(y−4.5) ,

! The IS estimator is

1

n

n∑

i=1

f(Y (i))

g(Y (i))
=

1

n

n∑

i=1

e−Y 2
i /2+Yi−4.5

√
2π

R code
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Importance Sampling
Normal Tail Variables

! The Importance sampler does not give us a sample ⇒ Can use Accept–Reject

! Sample Z ∼ N (0, 1), Z > a ⇒ Use Exponential Candidate
1√
2π

exp(−.5x2)

exp(−(x − a))
=

1√
2π

exp(−.5x2 + x + a) ≤ 1√
2π

exp(−.5a∗2 + a∗ + a)

! Where a∗ = max{a, 1}

! Normals > 20

! The Twilight Zone

! R code
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Importance Sampling
Comments

! Importance sampling has little restriction on the choice of the candidate

! g can be chosen from distributions that are easy to simulate

! Or efficient in the approximation of the integral.

! Moreover, the same sample (generated from g) can be used repeatedly

! Not only for different functions h but also for different densities f .
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Importance Sampling
Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

! Have an observation x from a beta B(α, β) distribution,

x ∼ Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

I[0,1](x)

! There exists a family of conjugate priors on (α, β) of the form

π(α, β) ∝
{

Γ(α + β)

Γ(α)Γ(β)

}λ

xα
0y

β
0 ,

where λ, x0, y0 are hyperparameters,

! The posterior is then equal to

π(α, β|x) ∝
{

Γ(α + β)

Γ(α)Γ(β)

}λ+1

[xx0]
α[(1 − x)y0]

β .
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Importance Sampling
Easy Model - Difficult Distribution -2

! The posterior distribution is intractable

π(α, β|x) ∝
{

Γ(α + β)

Γ(α)Γ(β)

}λ+1

[xx0]
α[(1 − x)y0]

β .

! Difficult to deal with the gamma functions

! Simulating directly from π(α, β|x) is impossible.

! What candidate to use?

! Contour Plot

! Suggest a candidate?

! R code
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Importance Sampling
Easy Model - Difficult Distribution – 3

! Try a Bivariate Student’s T (or Normal)

! Trial and error

! Student’s T (3, µ, Σ) distribution with µ = (50, 45) and

Σ =

(
220 190
190 180

)

! Produce a reasonable fit

! R code

! Note that we are using the fact that

X ∼ f(x) ⇒ Σ1/2X + µ ∼ f
(
(x − µ)′Σ−1(x − µ)

)
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Importance Sampling
Easy Model - Difficult Distribution – Posterior Means

! The posterior mean of α is
∫ ∫

απ(α, β|x)dαdβ =

∫ ∫ [
α

π(α, β|x)

g(α, β)

]
g(α, β)dαdβ ≈ 1

M

M∑

i=1

αi
π(αi, βi|x)

g(αi, βi)

where

! π(α, β|x) ∝
{

Γ(α+β)
Γ(α)Γ(β)

}λ+1
[xx0]α[(1 − x)y0]β

! g(α, β) = T (3, µ, Σ)

! Note that π(α, β|x) is not normalized, so we have to calculate
∫ ∫

απ(α, β|x)dαdβ∫ ∫
π(α, β|x)dαdβ

≈
∑M

i=1 αi
π(αi,βi|x)
g(αi,βi)∑M

i=1
π(αi,βi|x)
g(αi,βi)

! The same samples can be used for every posterior expectation

! R code



Monte Carlo Methods with R: Monte Carlo Integration [76]

Importance Sampling
Probit Analysis

Example: Probit posterior importance sampling approximation

! y are binary variables, and we have covariates x ∈ Rp such that

Pr(y = 1|x) = 1 − Pr(y = 0|x) = Φ(xTβ) , β ∈ R
p .

! We return to the dataset Pima.tr, x=BMI

! A GLM estimation of the model is (using centered x)

>glm(formula = y ~ x, family = binomial(link = "probit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.44957 0.09497 -4.734 2.20e-06 ***

x 0.06479 0.01615 4.011 6.05e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

So BMI has a significant impact on the possible presence of diabetes.
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Importance Sampling
Bayesian Probit Analysis

! From a Bayesian perspective, we use a vague prior

! β = (β1,β2) , each having a N (0, 100) distribution

! With Φ the normal cdf, the posterior is proportional to
n∏

i=1

[Φ(β1 + (xi − x̄)β2]
yi [Φ(−β1 − (xi − x̄)β2]

1−yi × e−
β2
1+β2

2
2×100

! Level curves of posterior

! MLE in the center

! R code
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Importance Sampling
Probit Analysis Importance Weights

! Normal candidate centered at the MLE - no finite variance guarantee

! The importance weights are rather uneven, if not degenerate

! Right side = reweighted candidate sample (R code)

! Somewhat of a failure
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Chapter 5: Monte Carlo Optimization

“He invented a game that allowed players to predict the outcome?”
Susanna Gregory

To Kill or Cure

This Chapter

! Two uses of computer-generated random variables to solve optimization problems.

! The first use is to produce stochastic search techniques

! To reach the maximum (or minimum) of a function

! Avoid being trapped in local maxima (or minima)

! Are sufficiently attracted by the global maximum (or minimum).

! The second use of simulation is to approximate the function to be optimized.
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Monte Carlo Optimization
Introduction

! Optimization problems can mostly be seen as one of two kinds:

! Find the extrema of a function h(θ) over a domain Θ

! Find the solution(s) to an implicit equation g(θ) = 0 over a domain Θ.

! The problems are exchangeable

! The second one is a minimization problem for a function like h(θ) = g2(θ)

! while the first one is equivalent to solving ∂h(θ)/∂θ = 0

! We only focus on the maximization problem
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Monte Carlo Optimization
Deterministic or Stochastic

! Similar to integration, optimization can be deterministic or stochastic

! Deterministic: performance dependent on properties of the function

! such as convexity, boundedness, and smoothness

! Stochastic (simulation)

! Properties of h play a lesser role in simulation-based approaches.

! Therefore, if h is complex or Θ is irregular, chose the stochastic approach.
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Monte Carlo Optimization
Numerical Optimization

! R has several embedded functions to solve optimization problems

! The simplest one is optimize (one dimensional)

Example: Maximizing a Cauchy likelihood C(θ, 1)

! When maximizing the likelihood of a Cauchy C(θ, 1) sample,

,(θ|x1, . . . , xn) =
n∏

i=1

1

1 + (xi − θ)2
,

! The sequence of maxima (MLEs) → θ∗ = 0 when n → ∞.

! But the journey is not a smooth one...
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Monte Carlo Optimization
Cauchy Likelihood

! MLEs (left) at each sample size, n = 1, 500 , and plot of final likelihood (right).

! Why are the MLEs so wiggly?

! The likelihood is not as well-behaved as it seems
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Monte Carlo Optimization
Cauchy Likelihood-2

! The likelihood ,(θ|x1, . . . , xn) =
∏n

i=1
1

1+(xi−θ)2

! Is like a polynomial of degree 2n

! The derivative has 2n zeros

! Hard to see if n = 500

! Here is n = 5

! R code
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Monte Carlo Optimization
Newton-Raphson

! Similarly, nlm is a generic R function using the Newton–Raphson method

! Based on the recurrence relation

θi+1 = θi −
[

∂2h

∂θ∂θT
(θi)

]−1
∂h

∂θ
(θi)

! Where the matrix of the second derivatives is called the Hessian

! This method is perfect when h is quadratic

! But may also deteriorate when h is highly nonlinear

! It also obviously depends on the starting point θ0 when h has several minima.



Monte Carlo Methods with R: Monte Carlo Optimization [86]

Monte Carlo Optimization
Newton-Raphson; Mixture Model Likelihood

! Bimodal Mixture Model Likelihood 1
4 N (µ1, 1) + 3

4 N (µ2, 1)

! Sequences go to the closest mode

! Starting point (−1,−1) has a steep gradient

! Bypasses the main mode (−0.68, 1.98)

! Goes to other mode (lower likelihood)
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Stochastic search
A Basic Solution

! A natural if rudimentary way of using simulation to find maxθ h(θ)

! Simulate points over Θ according to an arbitrary distribution f positive on Θ

! Until a high value of h(θ) is observed

! Recall h(x) = [cos(50x) + sin(20x)]2

! Max=3.8325

! Histogram of 1000 runs
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Stochastic search
Stochastic Gradient Methods

! Generating direct simulations from the target can be difficult.

! Different stochastic approach to maximization

! Explore the surface in a local manner.

! Can use θj+1 = θj + εj

! A Markov Chain

! The random component εj can be arbitrary

! Can also use features of the function: Newton-Raphson Variation

θj+1 = θj + αj∇h(θj) , αj > 0 ,

! Where ∇h(θj) is the gradient

! αj the step size
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Stochastic search
Stochastic Gradient Methods-2

! In difficult problems

! The gradient sequence will most likely get stuck in a local extremum of h.

! Stochastic Variation

∇h(θj) ≈
h(θj + βjζj) − h(θj + βjζj)

2βj
ζj =

∆h(θj, βjζj)

2βj
ζj ,

! (βj) is a second decreasing sequence

! ζj is uniform on the unit sphere ||ζ|| = 1.

! We then use
θj+1 = θj +

αj

2βj
∆h(θj,βjζj) ζj
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Stochastic Search
A Difficult Minimization

! Many Local Minima

! Global Min at (0, 0)

! Code in the text
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Stochastic Search
A Difficult Minimization – 2

Scenario 1 2 3 4

αj 1/ log(j + 1) 1/100 log(j + 1) 1/(j + 1) 1/(j + 1)
βj 1/ log(j + 1).1 1/ log(j + 1).1 1/(j + 1).5 1/(j + 1).1

! α ↓ 0 slowly,
∑

j αj = ∞

! β ↓ 0 more slowly,
∑

j(αj/βj)2 < ∞

! Scenarios 1-2: Not enough energy

! Scenarios 3-4: Good
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Simulated Annealing
Introduction

! This name is borrowed from Metallurgy:

! A metal manufactured by a slow decrease of temperature (annealing)

! Is stronger than a metal manufactured by a fast decrease of temperature.

! The fundamental idea of simulated annealing methods

! A change of scale, or temperature

! Allows for faster moves on the surface of the function h to maximize.

! Rescaling partially avoids the trapping attraction of local maxima.

! As T decreases toward 0, the values simulated from this distribution become
concentrated in a narrower and narrower neighborhood of the local maxima of h
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Simulated Annealing
Metropolis Algorithm/Simulated Annealing

• Simulation method proposed by Metropolis et al. (1953)

• Starting from θ0, ζ is generated from

ζ ∼ Uniform in a neighborhood of θ0.

• The new value of θ is generated as

θ1 =

{
ζ with probability ρ = exp(∆h/T ) ∧ 1

θ0 with probability 1 − ρ,

◦ ∆h = h(ζ) − h(θ0)

◦ If h(ζ) ≥ h(θ0), ζ is accepted

◦ If h(ζ) < h(θ0), ζ may still be accepted

◦ This allows escape from local maxima
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Simulated Annealing
Metropolis Algorithm - Comments

• Simulated annealing typically modifies the temperature T at each iteration

• It has the form

1. Simulate ζ from an instrumental distribution

with density g(|ζ − θi|);

2. Accept θi+1 = ζ with probability

ρi = exp{∆hi/Ti} ∧ 1;

take θi+1 = θi otherwise.

3. Update Ti to Ti+1.

• All positive moves accepted

• As T ↓ 0

◦ Harder to accept downward moves ◦ No big downward moves

• Not a Markov Chain - difficult to analyze
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Simulated Annealing
Simple Example

! Trajectory: Ti = 1
(1+i)2

! Log trajectory also works

! Can Guarantee Finding Global
Max

! R code
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Simulated Annealing
Normal Mixture

! Previous normal mixture

! Most sequences find max

! They visit both modes
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Stochastic Approximation
Introduction

! We now consider methods that work with the objective function h

! Rather than being concerned with fast exploration of the domain Θ.

! Unfortunately, the use of those methods results in an additional level of error

! Due to this approximation of h.

! But, the objective function in many statistical problems can be expressed as

! h(x) = E[H(x, Z)]

! This is the setting of so-called missing-data models
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Stochastic Approximation
Optimizing Monte Carlo Approximations

! If h(x) = E[H(x, Z)], a Monte Carlo approximation is

ĥ(x) =
1

m

m∑

i=1

H(x, zi),

! Zi’s are generated from the conditional distribution f(z|x).

! This approximation yields a convergent estimator of h(x) for every value of x

! This is a pointwise convergent estimator

! Its use in optimization setups is not recommended

! Changing sample of Zi’s ⇒ unstable sequence of evaluations

! And a rather noisy approximation to arg maxh(x)
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Stochastic Approximation
Bayesian Probit

Example: Bayesian analysis of a simple probit model

! Y ∈ {0, 1} has a distribution depending on a covariate X :

Pθ(Y = 1|X = x) = 1 − Pθ(Y = 0|X = x) = Φ(θ0 + θ1x) ,

! Illustrate with Pima.tr dataset, Y = diabetes indicator, X=BMI

! Typically infer from the marginal posterior

arg max
θ0

∫ ∏

i=1

Φ(θ0 + θ1xn)
yiΦ(−θ0 − θ1xn)1−yi dθ1 = arg max

θ0

h(θ0)

! For a flat prior on θ and a sample (x1, . . . , xn).
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Stochastic Approximation
Bayesian Probit – Importance Sampling

! No analytic expression for h

! The conditional distribution of θ1 given θ0 is also nonstandard

! Use importance sampling with a t distribution with 5 df

! Take µ = 0.1 and σ = 0.03 (MLEs)

! Importance Sampling Approximation

ĥ0(θ0) =
1

M

M∑

m=1

∏

i=1

Φ(θ0 + θm
1 xn)

yiΦ(−θ0 − θm
1 xn)

1−yit5(θ
m
1 ; µ, σ)−1 ,
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Stochastic Approximation
Importance Sampling Evaluation

! Plotting this approximation of h with t samples simulated for each value of θ0

! The maximization of the represented ĥ function is not to be trusted as an
approximation to the maximization of h.

! But, if we use the same t sample for all values of θ0

! We obtain a much smoother function

! We use importance sampling based on a single sample of Zi’s

! Simulated from an importance function g(z) for all values of x

! Estimate h with

ĥm(x) =
1

m

m∑

i=1

f(zi|x)

g(zi)
H(x, zi).
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Stochastic Approximation
Importance Sampling Likelihood Representation

! Top: 100 runs, different samples

! Middle: 100 runs, same sample

! Bottom: averages over 100 runs

! The averages over 100 runs are the same - but we will not do 100 runs

! R code: Run pimax(25) from mcsm
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Stochastic Approximation
Comments

! This approach is not absolutely fool-proof

! The precision of ĥm(x) has no reason to be independent of x

! The number m of simulations has to reflect the most varying case.

! As in every importance sampling experiment

! The choice of the candidate g is influential

! In obtaining a good (or a disastrous) approximation of h(x).

! Checking for the finite variance of the ratio f(zi|x)H(x, zi)
/
g(zi)

! Is a minimal requirement in the choice of g
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Missing-Data Models and Demarginalization
Introduction

! Missing data models are special cases of the representation h(x) = E[H(x, Z)]

! These are models where the density of the observations can be expressed as

g(x|θ) =

∫

Z
f(x, z|θ) dz .

! This representation occurs in many statistical settings

! Censoring models and mixtures

! Latent variable models (tobit, probit, arch, stochastic volatility, etc.)

! Genetics: Missing SNP calls
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Missing-Data Models and Demarginalization
Mixture Model

Example: Normal mixture model as a missing-data model

! Start with a sample (x1, . . . , xn)

! Introduce a vector (z1, . . . , zn) ∈ {1, 2}n such that

Pθ(Zi = 1) = 1 − Pθ(Zi = 2) = 1/4 , Xi|Zi = z ∼ N (µz, 1) ,

! The (observed) likelihood is then obtained as E[H(x,Z)] for

H(x, z) ∝
∏

i; zi=1

1

4
exp
{
−(xi − µ1)

2/2
} ∏

i; zi=2

3

4
exp
{
−(xi − µ2)

2/2
}

,

! We recover the mixture model
1

4
N (µ1, 1) +

3

4
N (µ2, 1)

! As the marginal distribution of Xi.
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Missing-Data Models and Demarginalization
Censored–Data Likelihood

Example: Censored–data likelihood

! Censored data may come from experiments

! Where some potential observations are replaced with a lower bound

! Because they take too long to observe.

! Suppose that we observe Y1, . . ., Ym, iid, from f(y − θ)

! And the (n − m) remaining (Ym+1, . . . , Yn) are censored at the threshold a.

! The corresponding likelihood function is

L(θ|y) = [1 − F (a − θ)]n−m
m∏

i=1

f(yi − θ),

! F is the cdf associated with f
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Missing-Data Models and Demarginalization
Recovering the Observed Data Likelihood

! If we had observed the last n − m values

! Say z = (zm+1, . . . , zn), with zi ≥ a (i = m + 1, . . . , n),

! We could have constructed the (complete data) likelihood

Lc(θ|y, z) =
m∏

i=1

f(yi − θ)
n∏

i=m+1

f(zi − θ) .

! Note that
L(θ|y) = E[Lc(θ|y,Z)] =

∫

Z
Lc(θ|y, z)k(z|y, θ) dz,

! Where k(z|y, θ) is the density of the missing data

! Conditional on the observed data

! The product of the f(zi − θ)/[1 − F (a − θ)]’s

! f(z − θ) restricted to (a, +∞).
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Missing-Data Models and Demarginalization
Comments

! When we have the relationship

g(x|θ) =

∫

Z
f(x, z|θ) dz .

! Z merely serves to simplify calculations

! it does not necessarily have a specific meaning

! We have the complete-data likelihood Lc(θ|x, z)) = f(x, z|θ)

! The likelihood we would obtain

! Were we to observe (x, z),the complete data

! REMEMBER:

g(x|θ) =

∫

Z
f(x, z|θ) dz .
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The EM Algorithm
Introduction

! The EM algorithm is a deterministic optimization technique

! Dempster, Laird and Rubin 1977

! Takes advantage of the missing data representation

! Builds a sequence of easier maximization problems

! Whose limit is the answer to the original problem

! We assume that we observe X1, . . . , Xn ∼ g(x|θ) that satisfies

g(x|θ) =

∫

Z
f(x, z|θ) dz,

! And we want to compute θ̂ = arg max L(θ|x) = arg max g(x|θ).
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The EM Algorithm
First Details

! With the relationship g(x|θ) =
∫
Z f(x, z|θ) dz,

! (X,Z) ∼ f(x, z|θ)

! The conditional distribution of the missing data Z

! Given the observed data x is

k(z|θ,x) = f(x, z|θ)
/
g(x|θ) .

! Taking the logarithm of this expression leads to the following relationship

log L(θ|x)︸ ︷︷ ︸ = Eθ0[log Lc(θ|x,Z)]︸ ︷︷ ︸−Eθ0[log k(Z|θ,x)]︸ ︷︷ ︸,

Obs. Data Complete Data Missing Data

! Where the expectation is with respect to k(z|θ0,x).

! In maximizing log L(θ|x), we can ignore the last term
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The EM Algorithm
Iterations

! Denoting
Q(θ|θ0,x) = Eθ0[log Lc(θ|x,Z)],

! EM algorithm indeed proceeds by maximizing Q(θ|θ0,x) at each iteration

! If θ̂(1) = argmaxQ(θ|θ0,x), θ̂(0) → θ̂(1)

! Sequence of estimators {θ̂(j)}, where

θ̂(j) = argmaxQ(θ|θ̂(j−1))

! This iterative scheme

! Contains both an expectation step

! And a maximization step

! Giving the algorithm its name.
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The EM Algorithm
The Algorithm

Pick a starting value θ̂(0) and set m = 0.

Repeat

1. Compute (the E-step)
Q(θ|θ̂(m),x) = Eθ̂(m)

[log Lc(θ|x,Z)] ,

where the expectation is with respect to k(z|θ̂(m),x).

2. Maximize Q(θ|θ̂(m),x) in θ and take (the M-step)

θ̂(m+1) = arg max
θ

Q(θ|θ̂(m),x)

and set m = m + 1

until a fixed point is reached; i.e., θ̂(m+1) = θ̂(m).fixed point
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The EM Algorithm
Properties

! Jensen’s inequality ⇒ The likelihood increases at each step of the EM algorithm

L(θ̂(j+1)|x) ≥ L(θ̂(j)|x),

! Equality holding if and only if Q(θ̂(j+1)|θ̂(j),x) = Q(θ̂(j)|θ̂(j),x).

! Every limit point of an EM sequence {θ̂(j)} is a stationary point of L(θ|x)

! Not necessarily the maximum likelihood estimator

! In practice, we run EM several times with different starting points.

! Implementing the EM algorithm thus means being able to

(a) Compute the function Q(θ′|θ,x)

(b) Maximize this function.
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The EM Algorithm
Censored Data Example

! The complete-data likelihood is

Lc(θ|y, z) ∝
m∏

i=1

exp{−(yi − θ)2/2}
n∏

i=m+1

exp{−(zi − θ)2/2} ,

! With expected complete-data log-likelihood

Q(θ|θ0,y) = −1

2

m∑

i=1

(yi − θ)2 − 1

2

n∑

i=m+1

Eθ0[(Zi − θ)2] ,

! the Zi are distributed from a normal N (θ, 1) distribution truncated at a.

! M-step (differentiating Q(θ|θ0,y) in θ and setting it equal to 0 gives

θ̂ =
mȳ + (n − m)Eθ′[Z1]

n
.

! With Eθ[Z1] = θ + ϕ(a−θ)
1−Φ(a−θ),
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The EM Algorithm
Censored Data MLEs

! EM sequence

θ̂(j+1) =
m

n
ȳ+

n − m

n

[

θ̂(j) +
ϕ(a − θ̂(j))

1 − Φ(a − θ̂(j))

]

! Climbing the Likelihood

! R code
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The EM Algorithm
Normal Mixture

! Normal Mixture Bimodal Likelihood

Q(θ′|θ,x) = −1

2

n∑

i=1

Eθ

[
Zi(xi − µ1)

2 + (1 − Zi)(xi − µ2)
2
∣∣x
]
.

Solving the M-step then provides the closed-form expressions

µ′
1 = Eθ

[
n∑

i=1

Zixi|x
]/

Eθ

[
n∑

i=1

Zi|x
]

and

µ′
2 = Eθ

[
n∑

i=1

(1 − Zi)xi|x
]/

Eθ

[
n∑

i=1

(1 − Zi)|x
]

.

Since

Eθ [Zi|x] =
ϕ(xi − µ1)

ϕ(xi − µ1) + 3ϕ(xi − µ2)
,
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The EM Algorithm
Normal Mixture MLEs

! EM five times with various starting points

! Two out of five sequences → higher mode

! Others → lower mode
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Monte Carlo EM
Introduction

! If computation Q(θ|θ0,x) is difficult, can use Monte Carlo

! For Z1, . . . ,ZT ∼ k(z|x, θ̂(m)), maximize

Q̂(θ|θ0,x) =
1

T

T∑

i=1

log Lc(θ|x, zi)

! Better: Use importance sampling

! Since

arg max
θ

L(θ|x) = arg max
θ

log
g(x|θ)

g(x|θ(0))
= arg max

θ
log Eθ(0)

[
f(x, z|θ)

f(x, z|θ(0))

∣∣∣∣x
]

,

! Use the approximation to the log-likelihood

log L(θ|x) ≈ 1

T

T∑

i=1

Lc(θ|x, zi)

Lc(θ(0)|x, zi)
,
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Monte Carlo EM
Genetics Data

Example: Genetic linkage.

! A classic example of the EM algorithm

! Observations (x1, x2, x3, x4) are gathered from the multinomial distribution

M
(

n;
1

2
+

θ

4
,
1

4
(1 − θ),

1

4
(1 − θ),

θ

4

)
.

! Estimation is easier if the x1 cell is split into two cells

! We create the augmented model

(z1, z2, x2, x3, x4) ∼ M
(

n;
1

2
,
θ

4
,
1

4
(1 − θ),

1

4
(1 − θ),

θ

4

)

with x1 = z1 + z2.

! Complete-data likelihood: θz2+x4(1 − θ)x2+x3

! Observed-data likelihood: (2 + θ)x1θx4(1 − θ)x2+x3
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Monte Carlo EM
Genetics Linkage Calculations

! The expected complete log-likelihood function is

Eθ0[(Z2 + x4) log θ + (x2 + x3) log(1 − θ)] =

(
θ0

2 + θ0
x1 + x4

)
log θ + (x2 + x3) log(1 − θ),

! which can easily be maximized in θ, leading to the EM step

θ̂1 =

{
θ0 x1

2 + θ0

}/{
θ0 x1

2 + θ0
+ x2 + x3 + x4

}
.

! Monte Carlo EM: Replace the expectation with

! zm = 1
m

∑m
i=1 zi, zi ∼ B(x1, θ0/(2 + θ0))

! The MCEM step would then be
̂̂
θ1 =

zm

zm + x2 + x3 + x4
,

which converges to θ̂1 as m grows to infinity.
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Monte Carlo EM
Genetics Linkage MLEs

! Note variation in MCEM sequence

! Can control with ↑ simulations

! R code
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Monte Carlo EM
Random effect logit model

Example: Random effect logit model

! Random effect logit model,

! yij is distributed conditionally on one covariate xij as a logit model

P (yij = 1|xij, ui, β) =
exp {βxij + ui}

1 + exp {βxij + ui}
,

! ui ∼ N (0, σ2) is an unobserved random effect.

! (U1, . . . , Un) therefore corresponds to the missing data Z
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Monte Carlo EM
Random effect logit model likelihood

! For the complete data likelihood with θ = (β,σ),

Q(θ′|θ,x,y) =
∑

i,j

yijE[β′xij + Ui|β, σ,x,y]

−
∑

i,j

E[log 1 + exp{β′xij + Ui}|β, σ,x,y]

−
∑

i

E[U2
i |β, σ,x,y]/2σ′2 − n log σ′ ,

! it is impossible to compute the expectations in Ui.

! Were those available, the M-step would be difficult but feasible

! MCEM: Simulate the Ui’s conditional on β, σ,x,y from

π(ui|β, σ,x,y) ∝
exp
{∑

j yijui − u2
i /2σ2

}

∏
j [1 + exp {βxij + ui}]
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Monte Carlo EM
Random effect logit MLEs

! Top: Sequence of β’s from the MCEM
algorithm

! Bottom: Sequence of completed likeli-

hoods

! MCEM sequence

! Increases the number of Monte Carlo steps
at each iteration

! MCEM algorithm

! Does not have EM monotonicity property


