Introducing Monte Carlo Methods with R

Christian P. Robert George Casella
Université Paris Dauphine University of Florida
xlan@ceremade.dauphine.fr casella@ufl.edu

Monte Carlo Methods with R: Introduction [1]

Based on

e [ntroducing Monte Carlo Methods with R, 2009, Springer-Verlag

e Data and R programs for the course available at
http://www.stat.ufl.edu/ casella/IntroMonte/

Robert - Casella Christian P. Robert
Introducing Monte Carlo Methods with R George Casella

Introducing Monte

Carlo Methods with R

Monte Carlo Methods with R: Basic R Programming [2]

Chapter 1: Basic R Programming

“You’re missing the big picture,” he told her. “A good album should be
more than the sum of its parts.”

Ian Rankin

Exit Music

This Chapter

» We introduce the programming language R
» Input and output, data structures, and basic programming commands

» The material is both crucial and unavoidably sketchy

Monte Carlo Methods with R: Basic R Programming [3]

Basic R Programming
Introduction

» This is a quick introduction to R
» There are entire books devoted to R
> R Reference Card
> available at http://cran.r-project.org/doc/contrib/Short-refcard. pdf
» Take Heart!
> The syntax of R is simple and logical
> The best, and in a sense the only, way to learn R is through trial-and-error

» mbedded help commands help() and help.search()

>help.start () opens a Web browser linked to the local manual pages

Monte Carlo Methods with R: Basic R Programming [4]

Basic R Programming
Why R 7

» There exist other languages, most (all?) of them faster than R, like Matlab, and
even free, like C or Python.

» The language combines a sufficiently high power (for an interpreted language)
with a very clear syntax both for statistical computation and graphics.

» R is a flexible language that is object-oriented and thus allows the manipulation
of complex data structures in a condensed and efficient manner.

» [ts graphical abilities are also remarkable

> Possible interfacing with I4TEXusing the package Sweave.

Monte Carlo Methods with R: Basic R Programming [5]

Basic R Programming
Why R 7

» R offers the additional advantages of being a free and open-source system

> There is even an R newsletter, R-News

> Numerous (free) Web-based tutorials and user’s manuals
» [t runs on all platforms: Mac, Windows, Linux and Unix

» R provides a powerful interface

> Can integrate programs written in other languages

> Such as C, C++, Fortran, Perl, Python, and Java.

» It is increasingly common to see people who develop new methodology simulta-
neously producing an R package

» Can interface with WinBugs

Monte Carlo Methods with R: Basic R Programming [6]

Basic R Programming
Getting started

» Type 'demo()’ for some demos; demo (image) and demo (graphics)
» 'help()’ for on-line help, or "help.start()” for an HTML browser interface to help.
» Type 'q()" to quit R.

» Additional packages can be loaded via the 1ibrary command, as in

> library(combinat) # combinatorics utilities
> library(datasets) # The R Datasets Package

> There exist hundreds of packages available on the Web.

> install.package("mcsm")

» A library call is required each time R is launched

Monte Carlo Methods with R: Basic R Programming [7]

Basic R Programming
R objects

» R distinguishes between several types of objects

> scalar, vector, matrix, time series, data frames, functions, or graphics.
> An R object is mostly characterized by a mode

> The different modes are
- null (empty object),
- logical (TRUE or FALSE),
- numeric (such as 3, 0.14159, or 2+sqrt(3)),
- complex, (such as 3-2i or complex(1,4,-2)), and
- character (such as "Blue", "binomial”, "male”, or "y=a+bx"),

» The R function str applied to any R object will show its structure.

Monte Carlo Methods with R: Basic R Programming (8]

Basic R Programming
Interpreted

Monte Carlo Methods with R: Basic R Programming [9]

Basic R Programming — The vector class

> a=c(5,5.6,1,4,-5) build the object a containing a numeric vector

\4

al1l]
b=al[2:4]

d=alc(1,3,5)]

2*a

b7%53

of dimension 5 with elements 5, 5.6, 1, 4, -5
display the first element of a

build the numeric vector b of dimension 3

with elements 5.6, 1, 4
build the numeric vector d of dimension 3

with elements 5, 1, =5
multiply each element of a by 2

and display the result
provides each element of b modulo 3

Monte Carlo Methods with R: Basic R Programming [10]

Basic R Programming
More vector class

> e=3/d build the numeric vector e of dimension 3
and elements 3/5, 3, =3/5
> log(dxe) multiply the vectors d and e term by term

and transform each term into its natural logarithm
> sum(d) calculate the sum of d

> length(d) display the length of d

Monte Carlo Methods with R: Basic R Programming [11]

> t(d)
> t(d)*e

> t(d)%*x%he

> g=c(sqrt(2),log(10))

> e[d==5]

> a[-3]

> is.vector(d)

Basic R Programming
Even more vector class

transpose d, the result is a row vector
elementwise product between two vectors

with identical lengths
matrix product between two vectors

with identical lengths
build the numeric vector g of dimension 2

and elements /2, log(10)
build the subvector of e that contains the

components e[i] such that d[i]=5
create the subvector of a that contains

all components of a but the third.
display the logical expression TRUE if

a vector and FALSE else

Monte Carlo Methods with R: Basic R Programming [12]

Basic R Programming
Comments on the vector class

» The ability to apply scalar functions to vectors: Major Advantage of R.
>> lgamma(c(3,5,7))
> returns the vector with components (log I'(3),log I'(5), log I'(7)).
» Functions that are specially designed for vectors include
sample, permn, order,sort, and rank
> All manipulate the order in which the components of the vector occur.
> permn is part of the combinat library

» The components of a vector can also be identified by names.

> For a vector x, names (x) is a vector of characters of the same length as x

Monte Carlo Methods with R: Basic R Programming [13]

Basic R Programming
The matrix, array, and factor classes

» The matrix class provides the R representation of matrices.

» A typical entry is

> x=matrix(vec,nrow=n,ncol=p)

> Creates an n X p matrix whose elements are of the dimension np vector vec
» Some manipulations on matrices

> The standard matrix product is denoted by %*7%,

> while * represents the term-by-term product.

> diag gives the vector of the diagonal elements of a matrix

> crossprod replaces the product t (x)%*%y on either vectors or matrices
> crossprod (x,y) more efficient

> apply is easy to use for functions operating on matrices by row or column

Monte Carlo Methods with R: Basic R Programming [14]

Basic R Programming

Some matrix commands

> xl=matrix(1:20,nrow=5)
> x2=matrix(1:20,nrow=5,byrow=T)

a=x1%*%ht (x2)
c=x1%*x2

dim(x1)

b[,2]
b[c(3,4),]
b[-2,]
rbind(x1,x2)
cbind (x1,x2)
apply(x1,1,sum)

YV V V V V V V V V V

as.matrix(1:10)

build the numeric matrix x1 of dimension

5 X 4 with first row 1, 6, 11, 16

build the numeric matrix x2 of dimension

5 x 4 with first row 1, 2, 3, 4

matrix product

term-by-term product between x1 and x2
display the dimensions of x1

select the second column of b

select the third and fourth rows of b

delete the second row of b

vertical merging of x1 and x2rbind(*)rbind
horizontal merging of x1 and x2rbind(*)rbind
calculate the sum of each row of x1
turn the vector 1:10 into a 10 x 1 matrix

» Lots of other commands that we will see throughout the course

Monte Carlo Methods with R: Basic R Programming [15]

Basic R Programming

The list and data.frame classes
The Last One

» A list is a collection of arbitrary objects known as its components

> 1li=list(num=1:5,y="color",a=T) create a list with three arguments

» The last class we briefly mention is the data frame

> A list whose elements are possibly made of differing modes and attributes

> But have the same length

> vi=sample(1:12,30,rep=T) simulate 30 independent uniform {1,2,...,12}
> v2=sample (LETTERS[1:10],30,rep=T) simulate 30 independent uniform {a,b,, j}
> v3=runif (30) simulate 30 independent uniform [0, 1]

> v4=rnorm(30) simulate 30 independent standard normals

> xx=data.frame(vl,v2,v3,v4) create a data frame

» R code

Monte Carlo Methods with R: Basic R Programming [16]

Probability distributions in R

» R , or the web, has about all probability distributions

» Prefixes: p,d,q, r

Distribution Core Parameters Default Values
Beta, beta shapel, shape2

Binomial binom size, prob

Cauchy cauchy location, scale 0,1
Chi-square chisq df

Exponential exp 1/mean 1

F f dfil, df2

Gamma gamma shape,1/scale NA 1
Geometric geom prob

Hypergeometric hyper m, n, k

Log-normal lnorm mean, sd 0,1
Logistic logis location, scale 0,1
Normal norm mean, sd 0,1
Poisson pois lambda

Student t df

Uniform unif min, max 0,1

Weibull weibull shape

Monte Carlo Methods with R: Basic R Programming [17]

Basic and not-so-basic statistics
t-test

» Testing equality of two means

> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)

One Sample t-test

data: x
t = -0.8168, df = 24, p-value = 0.4220

alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

-0.4915103 0.2127705

sample estimates:

mean of x

-0.1393699

Monte Carlo Methods with R: Basic R Programming [18]

Basic and not-so-basic statistics
Correlation

» Correlation

> attach(faithful) #resident dataset
> cor.test(faithfull,1],faithfull,2])

Pearson’s product-moment correlation

data: faithfull, 1] and faithfull, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.8756964 0.9210652
sample estimates:
cor

0.9008112

» R code

Monte Carlo Methods with R: Basic R Programming [19]

Basic and not-so-basic statistics
Splines

» Nonparametric regression with loess function or using natural splines

» Relationship between nitrogen level in soil and abundance of a bacteria AOB

» Natural spline fit (dark)
> With ns=2 (linear model)

AOB density

» Loess fit (brown) with span=1.25

» R code

T T T T T T
1 2 3 4 5 6

.
.

T
0

Nitrogen Level

Monte Carlo Methods with R: Basic R Programming [20]

Basic and not-so-basic statistics
Generalized Linear Models

» Fitting a binomial (logistic) glm to the probability of suffering from diabetes for
a woman within the Pima Indian population

> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7935 -0.8368 -0.5033 1.0211 2.2531

Coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) -6.49870 1.17459 -5.533 3.15e-08 *x**

bmi 0.10519 0.02956 3.558 0.000373 *x*x
age 0.07104 0.01538 4.620 3.84e-06 *x*x
Signif. codes: 0 “*%%’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ° ’ 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 256.41 on 199 degrees of freedom

Residual deviance: 215.93 on 197 degrees of freedom

AIC: 221.93

Number of Fisher Scoring iterations: 4

Monte Carlo Methods with R: Basic R Programming [21]

Basic and not-so-basic statistics
Generalized Linear Models — Comments
» Concluding with the significance both of the body mass index bmi and the age

» Other generalized linear models can be defined by using a different family value
> glm(y “x, family=quasi(var="mu~2", link="log"))
> Quasi-Likelihood also

» Many many other procedures

> Time series, anova,...

» One last one

Monte Carlo Methods with R: Basic R Programming [22]

Basic and not-so-basic statistics
Bootstrap

» The bootstrap procedure uses the empirical distribution as a substitute for the
true distribution to construct variance estimates and confidence intervals.

> A sample Xq,..., X, is with replacement

> The empirical distribution has a finite but large support made of n" points

» For example, with data y, we can create a bootstrap sample y* using the code
> ystar=sample(y,replace=T)

> For each resample, we can calculate a mean, variance, etc

Monte Carlo Methods with R: Basic R Programming [23]

Basic and not-so-basic statistics

Simple illustration of bootstrap

1.0

Relative Frequency
\
|

0.4
|
~_
[

0.2

I I I I I I I
4.0 4.5 5.0 5.5 6.0 6.5 7.0

Bootstrap Means

» A histogram of 2500 bootstrap means
» Along with the normal approximation
» Bootstrap shows some skewness

» R code

Monte Carlo Methods with R: Basic R Programming [24]

Basic and not-so-basic statistics
Bootstrapping Regression

» The bootstrap is not a panacea

> Not always clear which quantity should be bootstrapped
> In regression, bootstrapping the residuals is preferred
» Linear regression
Yij = a+ Pz + &,

a and (8 are the unknown intercept and slope, €;; are the iid normal errors

» The residuals from the least squares fit are given by
Eij = Yij — Q@ — Bu;,
> We bootstrap the residuals
> Produce a new sample (€5;);; by resampling from the &;;’s

> The bootstrap samples are then y; = y,; + €7

Monte Carlo Methods with R: Basic R Programming [25]

Basic and not-so-basic statistics
Bootstrapping Regression — 2

] o
— LO — 1 _
o H [a\]
& 7] - |
o
c?.l p—
o B
o) S Q -])
5 L 5 27 » Histogram of 2000 bootstrap samples
S o I S]
T S | i :
S _ | » We can also get confidence intervals
3 - » R code
o _]
Lo
o — o -
[I I I I | [I I I I I |
1.5 2.5 3.5 3.8 4.2 4.6 5.0

Intercept Slope

Monte Carlo Methods with R: Basic R Programming [26]

Basic R Programming
Some Other Stuff

» Graphical facilities

> Can do a lot; see plot and par

» Writing new R functions
>h=function(x) (sin(x) "2+cos(x)~3)~(3/2)
> We will do this a lot

» Input and output in R

>write.table, read.table, scan

» Don’t forget the mcsm package

Monte Carlo Methods with R: Random Variable Generation [27]

Chapter 2: Random Variable Generation

“It has long been an azxtom of mine that the little things are infinitely the
most important.”

Arthur Conan Doyle

A Case of Identity

This Chapter

» We present practical techniques that can produce random variables
» From both standard and nonstandard distributions
» First: Transformation methods

» Next: Indirect Methods - Accept—Reject

Monte Carlo Methods with R: Random Variable Generation [28]
Introduction

» Monte Carlo methods rely on

> The possibility of producing a supposedly endless flow of random variables

> For well-known or new distributions.

» Such a simulation is, in turn,

> Based on the production of uniform random variables on the interval (0, 1).

» We are not concerned with the details of producing uniform random variables

» We assume the existence of such a sequence

Monte Carlo Methods with R: Random Variable Generation [29]

Introduction
Using the R Generators

Monte Carlo Methods with R: Random Variable Generation [30]
Uniform Simulation

» The uniform generator in R is the function runif
» The only required entry is the number of values to be generated.
» The other optional parameters are min and max, with R code

> runif (100, min=2, max=5)

will produce 100 random variables U(2, 5).

Monte Carlo Methods with R: Random Variable Generation [31]

Uniform Simulation
Checking the Generator

» A quick check on the properties of this uniform generator is to

> Look at a histogram of the Xj’s,
> Plot the pairs (X, X;11)

> Look at the estimate autocorrelation function

» [.ook at the R code

>

V V V V V V V

Nsim=10"4 #number of random numbers
x=runif (Nsim)

x1=x[-Nsim] #vectors to plot

x2=x[-1] #adjacent pairs

par (mfrow=c(1,3))

hist(x)

plot(x1,x2)

acf (x)

Monte Carlo Methods with R: Random Variable Generation [32]

Uniform Simulation
Plots from the Generator

Histogram of x

120
|

100
I

Frequency
40 60
|
X2

20

[I I I I I
0.0 0.4 0.8

X x1
» Histogram (left), pairwise plot (center), and estimated autocorrelation func-
tion (right) of a sequence of 10 uniform random numbers generated by runif.

Monte Carlo Methods with R: Random Variable Generation [33]

Uniform Simulation
Some Comments

» Remember: runif does not involve randomness per se.
» [t is a deterministic sequence based on a random starting point.

» The R function set.seed can produce the same sequence.

> set.seed(1)

> runif (5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)

> runif (5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)

> runif (5)

[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

» Setting the seed determines all the subsequent values

Monte Carlo Methods with R: Random Variable Generation [34]

The Inverse Transform

» The Probability Integral Transform

> Allows us to transform a uniform into any random variable

» For example, if X has density f and cdf F', then we have the relation

Fa)= [s
and we set U = F/(X) and solve for X

» Lxample 2.1
>If X ~ Exp(l), then F(z)=1—e"

> Solving for z in u =1 — e gives z = — log(1 — u)

Monte Carlo Methods with R: Random Variable Generation [35]

Generating Exponentials

> Nsim=10"4 #number of random variables
> U=runif (Nsim)
> X=-1log(U) #transforms of uniforms
> Y=rexp(Nsim) #exponentials from R
> par (mfrow=c(1,2)) #plots
> hist(X,freq=F,main="Exp from Uniform")
> hist(Y,freq=F,main="Exp from R")
Exp from Uniform Exp fromR
0
o ! » Histograms of exponential random variables
. > Inverse transform (right)
= > R command rexp (left)
. > Exp(1) density on top
=2 H”mmiﬂln;m.....,
S

Monte Carlo Methods with R: Random Variable Generation [36]

Generating Other Random Variables From Uniforms

» This method is usetul for other probability distributions

> Ones obtained as a transformation of uniform random variables

» Logistic pdf: f(x) = %[‘ (xxui///gﬁ] cdf: F(z) = 1+6_(%3_“)//6'

» Cauchy pdf: f(z) =+ 5, cdf: F(x) = 5 + Zarctan((z — p) /o).

1
7TO'1+($%)

Monte Carlo Methods with R: Random Variable Generation [37]

General Transformation Methods

» When a density f is linked in a relatively simple way

> To another distribution easy to simulate
> This relationship can be use to construct an algorithm to simulate from f

» If the X;’s are iid Exp(1) random variables,

> Three standard distributions can be derived as

Y =2) X;j~y;,, veN,

Y =8) Xj~Gap), aeN,

j=1
“ X
Y§g+2X Be(a,b), a,beN*,

where N* = {1,2,...}.

Monte Carlo Methods with R: Random Variable Generation [38]

General Transformation Methods
X Random Variables

» For example, to generate yi random variables, we could use the R code

> U=runif (3*x1074)

> U=matrix(data=U,nrow=3) #matrix for sums

> X=-1og(U) #uniform to exponential

> X=2% apply(X,2,sum) #sum up to get chi squares

» Not nearly as efficient as calling rchisq, as can be checked by the R code

> system.time(test1());system.time(test2())
user system elapsed
0.104 0.000 0.107
user system elapsed
0.004 0.000 0.004

» testl corresponds to the R code above

» test2 corresponds to X=rchisq(1074,df=6)

Monte Carlo Methods with R: Random Variable Generation [39]

General Transformation Methods
Comments

» These transformations are quite simple and will be used in our illustrations.

» However, there are limits to their usefulness,
> No odd degrees of freedom

> No normals

» For any specific distribution, efficient algorithms have been developed.

» Thus, if R has a distribution built in, it is almost always worth using

Monte Carlo Methods with R: Random Variable Generation [40]

General Transformation Methods
A Normal Generator

» Box Muller algorithm - two normals from two uniforms

» If Uy and Us are iid U)
» The variables X7 and X5
X, =/ —2log(U;) cos(2rls) , Xy = \/—2log(U;) sin(27Us) |

» Are iid MV (0, 1) by virtue of a change of variable argument.

» The Box—Muller algorithm is exact, not a crude CLT-based approximation

» Note that this is not the generator implemented in R

> It uses the probability inverse transform

> With a very accurate representation of the normal cdf

Monte Carlo Methods with R: Random Variable Generation [41]

General Transformation Methods
Multivariate Normals

» Can simulate a multivariate normal variable using univariate normals

> Cholesky decomposition of ¥ = AA’
>Y ~ N, (0,1) = AY ~ N,(0,%)

» There is an R package that replicates those steps, called rmnorm

> In the mnormt library

> Can also calculate the probability of hypercubes with the function sadmvn

> sadmvn(low=c(1,2,3) ,upp=c(10,11,12) ,mean=rep(0,3) ,var=B)
[1] 9.012408e-05

attr(,"error")

[1] 1.729111e-08

» B is a positive-definite matrix

» This is quite useful since the analytic derivation of this probability is almost always impossible.

Monte Carlo Methods with R: Random Variable Generation [42]
Discrete Distributions

» To generate discrete random variables we have an “all-purpose” algorithm.
» Based on the inverse transform principle

» To generate X ~ Py, where Fp is supported by the integers,

> We can calculate—the probabilities

> Once for all, assuming we can store them

pO:PQ(XSO)a plng(Xgl), p2:P9(X§2)7 I

> And then generate U ~ U] 1) and take
X:kifpk_l <U<pk.

Monte Carlo Methods with R: Random Variable Generation [43]

Discrete Distributions
Binomial

» Example To generate X ~ Bin(10,.3)

> The probability values are obtained by pbinom(k, 10, .3)
Po = 0028, P1 = 0149, P2 = 0382, ...y P10 = 1 ,

> And to generate X ~ P(7), take
po = 0.0009, p; =0.0073, ps=0.0296,...,

> Stopping the sequence when it reaches 1 with a given number of decimals.

> For instance, pog = 0.999985.

» Check the R code

Monte Carlo Methods with R: Random Variable Generation [44]

Discrete Distributions
Comments

» Specific algorithms are usually more efficient

» Improvement can come from a judicious choice of the probabilities first computed.

» For example, if we want to generate from a Poisson with A = 100

> The algorithm above is woetully ineflicient
> We expect most of our observations to be in the interval A 3v/\
> For A = 100 this interval is (70, 130)

> Thus, starting at 0 is quite wasteful

» A first remedy is to “ignore” what is outside of a highly likely interval
> In the current example P(X < 70) + P(X > 130) = 0.00268.

Monte Carlo Methods with R: Random Variable Generation [45]

Discrete Distributions
Poisson R Code

» R code that can be used to generate Poisson random variables for large values
of lambda.

» The sequence t contains the integer values in the range around the mean.

Nsim=10"4; lambda=100
spread=3*sqrt (lambda)
t=round (seq(max(0,lambda-spread) ,lambda+spread, 1))
prob=ppois(t, lambda)
X=rep(0,Nsim)
for (i in 1:Nsim){
u=runif (1)
X[i]=t[1]+sum(prob<u)-1 }

+ + VvV V V V VvV V

» The last line of the program checks to see what interval the uniform random
variable fell in and assigns the correct Poisson value to X.

Monte Carlo Methods with R: Random Variable Generation [46]

Discrete Distributions
Comments

» Another remedy is to start the cumulative probabilities at the mode of the dis-
crete distribution

» Then explore neighboring values until the cumulative probability is almost 1.

» Specific algorithms exist for almost any distribution and are often quite fast.
» So, if R has it, use it.

» But R does not handle every distribution that we will need,

Monte Carlo Methods with R: Random Variable Generation [47]

Mixture Representations

» [t is sometimes the case that a probability distribution can be naturally repre-
sented as a mixture distribution

» That is, we can write it in the form
fa) = [gelply) dy o F@) =3 pifle).
y i€y
> The mixing distribution can be continuous or discrete.

» To generate a random variable X using such a representation,

> we can first generate a variable Y from the mixing distribution

> Then generate X from the selected conditional distribution

Monte Carlo Methods with R: Random Variable Generation [48]

Mixture Representations
Generating the Mixture

» Continuous

fz) = /y g(@ly)ply) dy = y ~ ply) and X ~ f(zly), then X ~ f(z)

» Discrete
fla) = Z pi fi(x) = i ~p;and X ~ fi(z), then X ~ f(x)
1€)

» Discrete Normal Mixture R code

> p1x N (g, 01) + p2 * N(p2, 02) + ps * N(us, 03)

Monte Carlo Methods with R: Random Variable Generation [49]

Mixture Representations
Continuous Mixtures

» Student’s ¢ density with v degrees of freedom
Xly ~N(O,v/y) and Y ~ x;.
> Generate from a x? then from the corresponding normal distribution

> Obviously, using rt is slightly more eflicient

(1N
ERI (N
» If X is negative binomial X ~ Neg(n, p) z § | / XS\
> X[y ~P(y) and Y ~G(n,3). ° 2: 7 I
> R code generates from this mixture ; A

10 20 30 40 50

o

Monte Carlo Methods with R: Random Variable Generation [50]

Accept—Reject Methods
Introduction

» There are many distributions where transform methods fail
» For these cases, we must turn to indirect methods

> We generate a candidate random variable

> Only accept it subject to passing a test

» This class of methods is extremely powerful.

> It will allow us to simulate from virtually any distribution.

» Accept—Reject Methods

> Only require the functional form of the density f of interest
> f = target, g=candidate

» Where it is simpler to simulate random variables from g

Monte Carlo Methods with R: Random Variable Generation [51]

Accept—Reject Methods
Accept—Reject Algorithm

» The only constraints we impose on this candidate density g
> f and g have compatible supports (i.e., g(x) > 0 when f(z) > 0).
> There is a constant M with f(x)/g(x) < M for all x.

» X ~ f can be simulated as follows.

> Generate Y ~ g and, independently, generate U ~ Uy y).

>TFU < L1 set X =Y

> If the inequality is not satisfied, we then discard Y and U and start again.

» Note that M = sup, “j;((z))

» P(Accept) = % Expected Waiting Time = M

Monte Carlo Methods with R: Random Variable Generation [52]

Accept—Reject Algorithm
R Implementation

Succinctly, the Accept—Reject Algorithm is

Accept—Reject Method

1. Generate Y ~ g, U ~ Uy y;
2. Accept X =Y if U< f(Y)/Mg(Y);

3. Return to 1 otherwise.

» R implementation: If randg generates from g

> u=runif (1)*M
> y=randg(1)
> while (wf(y)/g(y))
{
u=runif (1)*M
y=randg(1)
+

» Produces a single generation y from f

Monte Carlo Methods with R: Random Variable Generation [53]

Accept—Reject Algorithm
Normals from Double Exponentials

» Candidate Y ~ %exp(—\yD

» Target X ~ \/—exp(z?/2)

oxp(—=1/2) 9

<
1 exp(—|y|) V2

=)

exp(1/2)
> Maximum at y =1
» Accept Y if U < exp(—.5Y? + |Y| — .5)

» Look at R code

Monte Carlo Methods with R: Random Variable Generation [54]

Accept—Reject Algorithm
Theory

» Why does this method work?
» A straightforward probability calculation shows

P(Y < x| Accept) = P (Y <z|U < ﬂgﬁ)) = P(X <ux)

> Simulating from g, the output of this algorithm is exactly distributed from f.

6

» The Accept—Reject method is applicable in any dimension

» As long as g is a density over the same space as f.

» Only need to know f/g up to a constant

» Only need an upper bound on M

Frequency

100 150 200 250

50

Histogram of v

Density

25

2.0

1.5

1.0

0.5

0.0

Histogram of Y

Density

10 15 20 25 30

05

0.0

Histogram of v

)

0.0

02 04 06 08

1.0

Density

10 15 20 25 30

0.5

0.0

Histogram of Y

&

0.0

02 04 06 08

1.0

Monte Carlo Methods with R: Random Variable Generation [57]

Accept—Reject Algorithm
Betas from Betas-Details

» Beta density oc 2%(1 — x)”
» Can generate if a and b integers

» If not, use candidate with a; and by integers

y'(1—y) a— ay

maximized at y =
Y a—a;+b—0b

> Need a; < a and b; < b

» LEfficiency T as the candidate gets closer to the target

» [Look at R code

Monte Carlo Methods with R: Random Variable Generation [58]

Accept—Reject Algorithm
Comments

;Some key properties of the Accept—Reject algorithm::
1. Only the ratio f/M is needed

> So the algorithm does not depend on the normalizing constant.

2. The bound f < Mg need not be tight

> Accept—Reject is valid, but less efficient, if M is replaced with a larger
constant.

3. The probability of acceptance is 1/M

> So M should be as small as possible for a given computational effort.

Monte Carlo Methods with R: Monte Carlo Integration [59]

Chapter 3: Monte Carlo Integration

“EFvery time I think I know what’s going on, suddenly there’s another
layer of complications. I just want this damn thing solved.”

John Scalzi
The Last Colony

This Chapter

» This chapter introduces the major concepts of Monte Carlo methods
» The validity of Monte Carlo approximations relies on the Law of Large Numbers

» The versatility of the representation of an integral as an expectation

Monte Carlo Methods with R: Monte Carlo Integration [60]

Monte Carlo Integration
Introduction

» We will be concerned with evaluating integrals of the form

| hia) fia) .

> f is a density
> We can produce an almost infinite number of random variables from f

» We apply probabilistic results

> Law of Large Numbers

> Central Limit Theorem

» The Alternative - Deterministic Numerical Integration

> R functions area and integrate
> OK in low (one) dimensions

> Usually needs some knowledge of the function

Monte Carlo Methods with R: Monte Carlo Integration [61]

Classical Monte Carlo Integration
The Monte Carlo Method

» The generic problem: Evaluate

> X takes its values in X

» The Monte Carlo Method
> Generate a sample (X1, ..., X,) from the density f

> Approximate the integral with

_ 1 —
hn== >, hiz;) .
j=1

Monte Carlo Methods with R: Monte Carlo Integration [62]

Classical Monte Carlo Integration
Validating the Monte Carlo Method

» The Convergence

=2 3 hla) = [h@) fla) do = E/h(X)

n

S

j=1
> Is valid by the Strong Law of Large Numbers

» When h*(X) has a finite expectation under f,
hn — E[h(X)]
V' Un

> Follows from the Central Limit Theorem

> Uy = oy Doy [hl(@g) — Rl

— N(0,1)

1.2

1.1

08 09 1.0

0.0 0.2 0.4 0.6 0.8 1.0
=l I I I I I
0 2000 4000 6000 8000 10000

Monte Carlo Methods with R: Monte Carlo Integration [64]

Classical Monte Carlo Integration

A Caution

(Y) —
c\l c—
- » The confidence band produced

| I | | I | . . .
N fidence band in the classical
| sense
L=
Sy
L]
o
e

o | I | | I |
0 2000 4000 6000 8000 10000

» They are were you to stop at a chosen number of iterations

Monte Carlo Methods with R: Monte Carlo Integration [65]

Classical Monte Carlo Integration
Comments

» T he evaluation of the Monte Carlo error is a bonus
» |t assumes that v,, is a proper estimate of the variance of h,,

» |f v,, does not converge, converges too slowly, a CLT may not apply

Monte Carlo Methods with R: Monte Carlo Integration [66]

Classical Monte Carlo Integration
Another Example

» Normal Probability

B(t) = 2 Y Lzt 00) = [e

—00

> The exact variance ®(t)[1 — O(t)]/n

> Conservative: Var &~ 1/4n

> For a precision of four decimals

> Want 2 x 1/1/4n < 10™* simulations
> Take n = (101)? = 10°

» This method breaks down for tail probabilities

Monte Carlo Methods with R: Monte Carlo Integration [67]

Importance Sampling
Introduction

» Importance sampling is based on an alternative formulation of the SLLN

B0 = [ho) L gta) do -, [h<X>f <X>] ;

g(X)

> f 1s the target density
> ¢ is the candidate density

Monte Carlo Methods with R: Monte Carlo Integration [68]

Importance Sampling
Introduction

» Importance sampling is based on an alternative formulation of the SLLN

B0 = [o) 18 o) o -, [PED)

> f is the target density
> g is the candidate density

> Sound Familiar? — Just like Accept—Reject

» SO

1 «— f(X)) NI
- ; S(X) hX;) — Ef[h(X)]

» As long as
> Var (h(X) f(X)/g(X)) < o0
>supp(g) D supp(h X f)

Monte Carlo Methods with R: Monte Carlo Integration [69]

Importance Sampling
Revisiting Normal Tail Probabilities

» 7 ~ N(0,1) and we are interested in the probability P(Z > 4.5)

» > pnorm(-4.5,1log=T)
[1] -12.59242

» Simulating Z ~ N(0, 1) only produces a hit once in about 3 million iterations!

>

>

» Take g = Exp(1) truncated at 4.5:

-y
_ € _ —(y—4.5)
[e~rda c
4.5

9(y)

» The IS estimator is
n i n o _y2 4
lzf(y()):lzenmm% R code
n = gY) n < V2T

1=

80

|
90

|
70

fsusq

T
00

00

25

24

23

22

21

20

Monte Carlo Methods with R: Monte Carlo Integration [71]

Importance Sampling
Comments

s Importance sampling has little restriction on the choice of the candidate

» ¢ can be chosen from distributions that are easy to simulate

> Or efficient in the approximation of the integral.

» Moreover, the same sample (generated from g) can be used repeatedly

> Not only for different functions h but also for different densities f.

Monte Carlo Methods with R: Monte Carlo Integration [72]

Importance Sampling
Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

» Have an observation x from a beta B(«, () distribution,

v~ 2O an(y gyt o)

[(a)1'(5)
» There exists a family of conjugate priors on (a;, 3) of the form
F(Oz + ﬁ) })\ a
(o, B) T
R

where \, xg, yo are hyperparameters,

» The posterior is then equal to

ﬂmﬁMMX{Na+m

P(a)I'(0)

Monte Carlo Methods with R: Monte Carlo Integration [73]

Importance Sampling
Easy Model - Difficult Distribution -2

» The posterior distribution is intractable
Do+ /)M

— z20]“1(1 = 2)yol” .
] S COU RN

m(a, flz) o

> Difficult to deal with the gamma functions

> Simulating directly from 7 (a, §|x) is impossible.

» What candidate to use?

200

180

» Contour Plot

100

» Suggest a candidate?

50

» R code

50 100 150 200 250

Monte Carlo Methods with R: Monte Carlo Integration [74]

Importance Sampling
Easy Model - Difficult Distribution — 3

» Try a Bivariate Student’s T (or Normal)

» Trial and error
> Student’s 7 (3, i,) distribution with g = (50, 45) and

o _ 220 190
— \ 190 180
> Produce a reasonable fit

>R code

» Note that we are using the fact that
X~ fla) = SPX o~ f (20— p)S (@ — p)

Monte Carlo Methods with R: Monte Carlo Integration [75]

Importance Sampling
Easy Model - Difficult Distribution — Posterior Means

» The posterior mean of « is
M

//om , Blr)dadp = //[B\x] (,B)dadB%%ZozZ

1=1

where
i o)« (Rt} e~

> g(a, B) =T (3, p,)
» Note that 7(a, [

x) is not normalized, so we have to calculate

J Jamla, Ble)dadg | ik o i)
[[7l Blz)dadB — M rloibil)

=1 g(a;,0)

» The same samples can be used for every posterior expectation

» R code

.ﬂ-(&i)ﬁi’x)

g(&ia ﬁl)

Monte Carlo Methods with R: Monte Carlo Integration [76]

Importance Sampling
Probit Analysis

Example: Probit posterior importance sampling approximation

» y are binary variables, and we have covariates x € R such that
Pr(y = 1|lz) =1 —Pr(y =0[z) = ®(x='3), [R,

» We return to the dataset Pima.tr, x=BMI

» A GLM estimation of the model is (using centered x)

>glm(formula = y ~ x, family = binomial(link = "probit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.44957 0.09497 -4.734 2.20e-06 *xx*x*
X 0.06479 0.01615 4.011 6.05e-05 *x*x*

Signif. codes: O **x 0.001 **x 0.01 *x 0.05 . 0.1 1

So BMI has a significant impact on the possible presence of diabetes.

Monte Carlo Methods with R: Monte Carlo Integration [77]

Importance Sampling
Bayesian Probit Analysis

» From a Bayesian perspective, we use a vague prior
> 6 = (01, 52) , each having a N'(0, 100) distribution

» With ® the normal cdf, the posterior is proportional to

n
B2+33

H [D(B1 + (2 — @) Ba) [@(—B1 — (w; — T)B] ™" x e 2x100

1=1

0.09

0.08

» Level curves of posterior

0.07

» MLE in the center

0.06

» R code

0.05

0.04

060 0.56 0.50 045 -0.40 035 0.30

By

Monte Carlo Methods with R: Monte Carlo Integration [78]

Importance Sampling
Probit Analysis Importance Weights

» Normal candidate centered at the MLE - no finite variance guarantee

» The importance weights are rather uneven, if not degenerate

Importance Weights

700
)
0.09

Frequency
300 400 500 600
1 L 1 1
B2
0.06 0.07 0.08

200
1

100
1
0.05

0.04

f T T T T 1
0.000 0.002 0.004 0.006 0.008 0010 -0.60 -0.55 -0.50 -0.45 -0.40 035 -0.30

weit/sum(weit) i

» Right side = reweighted candidate sample (R code)

P Somewhat of a failure

Monte Carlo Methods with R: Monte Carlo Optimization [79]

Chapter 5: Monte Carlo Optimization

“He invented a game that allowed players to predict the outcome?”

Susanna Gregory
To Kill or Clure

This Chapter

» Two uses of computer-generated random variables to solve optimization problems.

» The first use is to produce stochastic search techniques

> To reach the maximum (or minimum) of a function
> Avoid being trapped in local maxima (or minima)

> Are sufficiently attracted by the global maximum (or minimum).

» The second use of simulation is to approximate the function to be optimized.

Monte Carlo Methods with R: Monte Carlo Optimization [80]

Monte Carlo Optimization
Introduction

» Optimization problems can mostly be seen as one of two kinds:

> Find the extrema of a function h(6) over a domain ©

> Find the solution(s) to an implicit equation g(f) = 0 over a domain ©.

» The problems are exchangeable

> The second one is a minimization problem for a function like h(6) = ¢*(0)

> while the first one is equivalent to solving dh(6)/06 = 0

» We only focus on the maximization problem

Monte Carlo Methods with R: Monte Carlo Optimization [81]

Monte Carlo Optimization
Deterministic or Stochastic

» Similar to integration, optimization can be deterministic or stochastic

» Deterministic: performance dependent on properties of the function

> such as convexity, boundedness, and smoothness

» Stochastic (simulation)

> Properties of h play a lesser role in simulation-based approaches.

» Therefore, if A is complex or © is irregular, chose the stochastic approach.

Monte Carlo Methods with R: Monte Carlo Optimization [82]

Monte Carlo Optimization
Numerical Optimization

» R has several embedded functions to solve optimization problems

> The simplest one is optimize (one dimensional)

Example: Maximizing a Cauchy likelihood C(6, 1)
» When maximizing the likelihood of a Cauchy C(0, 1) sample,

n

1
€(9|$1""’$”):H1_|_(x._9)2’

1=1

» The sequence of maxima (MLEs) — 6* = 0 when n — oo.

» But the journey is not a smooth one...

mi

06

04

02

00

20

40 S0

Index

80

100

LL

400 2360 300 260 200 150

450

10

LL

-18 16 14 12 10
1

-20

-22

xplot

10

Monte Carlo Methods with R: Monte Carlo Optimization [85]

Monte Carlo Optimization
Newton-Raphson

» Similarly, nlm is a generic R function using the Newton—Raphson method

» Based on the recurrence relation

2h)
@H:@—[a J

s ®)| 558

» Where the matrix of the second derivatives is called the Hessian

> This method is perfect when h is quadratic

> But may also deteriorate when h is highly nonlinear

> It also obviously depends on the starting point) when h has several minima.

Monte Carlo Methods with R: Monte Carlo Optimization [86]

Monte Carlo Optimization
Newton-Raphson; Mixture Model Likelihood

» Bimodal Mixture Model Likelihood § N (1, 1) + 3 N (g, 1)

Mz

28

» Sequences go to the closest mode

» Starting point (—1,—1) has a steep gradient
> Bypasses the main mode (—0.68,1.98)

> Goes to other mode (lower likelihood)

Frequency

400

300

200

100

Histogram of maxlist

3.820

T
3.825

maxlist

3.830

Monte Carlo Methods with R: Monte Carlo Optimization [88]

Stochastic search
Stochastic Gradient Methods

» Generating direct simulations from the target can be difficult.

» Different stochastic approach to maximization

> Explore the surface in a local manner. > A Markov Chain

> Can use 041 = 0; + ¢ > The random component €; can be arbitrary

» Can also use features of the function: Newton-Raphson Variation
(9j+1 = 9]' + C\ijh(Qj) ; Q> 0,

> Where VA(6,) is the gradient

> aj the step size

Monte Carlo Methods with R: Monte Carlo Optimization [89]

Stochastic search
Stochastic Gradient Methods-2

» In difficult problems

> The gradient sequence will most likely get stuck in a local extremum of h.

» Stochastic Variation

W0+ 85¢) — Wb + B85¢;) Ah(0;, 8;¢;)

J Qﬁ] J Qﬁ] J
> (/3;) is a second decreasing sequence
> (; is uniform on the unit sphere ||¢|| = 1.

» We then use

O{ .
01 = 0; +— Ah(0;, 5;¢;) ¢
26]-

Monte Carlo Methods with R: Monte Carlo Optimization [90]

Stochastic Search
A Difficult Minimization

» Many Local Minima
» Global Min at (0, 0)

» Code in the text

Monte Carlo Methods with R: Monte Carlo Optimization [91]

Stochastic Search
A Difficult Minimization — 2

Scenario | 1 2 3 4

Q; 1/log(j+1) |1/100log(j +1)|1/(j+1) |1/(j+1)

B 1/log(j + 1)1 |1/log(G +1)7 | 1/G+1D”]1/(j+1)"
- _'scenari/oj 1\ . -

i_. Y il ta »a |0 ;D =09
ey e > 310 3iay/B))? < oo
scenario 3 J— scenario 4\‘ » Scenarios 1-2: Not enough energy

{ » Scenarios 3-4: Good

Y
1.0 -05 00 05 1.0
| el
ht
> d
Y
1.0 -05 00 05 1.0
I I

. = S T
-1.0 -05 00 05 1.0 -1.0 -05 00 05 1.0

X X

Monte Carlo Methods with R: Monte Carlo Optimization [92]

Simulated Annealing
Introduction

» This name is borrowed from Metallurgy:

» A metal manufactured by a slow decrease of temperature (annealing)

> Is stronger than a metal manufactured by a fast decrease of temperature.
» The fundamental idea of simulated annealing methods

> A change of scale, or temperature

> Allows for faster moves on the surface of the function h to maximize.

> Rescaling partially avoids the trapping attraction of local maxima.

» As 1" decreases toward 0, the values simulated from this distribution become
concentrated in a narrower and narrower neighborhood of the local maxima of h

Monte Carlo Methods with R: Monte Carlo Optimization [93]

Simulated Annealing
Metropolis Algorithm /Simulated Annealing

o Ah = h(¢) — h(6)
oIf h(C) > h(By), (is accepted
o If h(¢) < h(fy), ¢ may still be accepted

o This allows escape from local maxima

Monte Carlo Methods with R: Monte Carlo Optimization [94]

Simulated Annealing
Metropolis Algorithm - Comments

e Simulated annealing typically modifies the temperature T at each iteration
e [t has the form

e All positive moves accepted
e AsT | 0

o Harder to accept downward moves o No big downward moves
e Not a Markov Chain - difficult to analyze

Monte Carlo Methods with R: Monte Carlo Optimization [95]

Simulated Annealing
Simple Example

™ ™ ‘ 1

- - _ » Trajectory: 1; = T
= —l I | : [| I = —l I | [| I .

00 04 08 00 04 08 » Log trajectory also works

X X
» Can Guarantee Finding Global

=4 ® 9 Max
- - » R code
= —l I I [| I = —l I | [| I

0.0 0.4 0.8 0.0 0.4 0.8

Monte Carlo Methods with R: Monte Carlo Optimization [96]

Simulated Annealing
Normal Mixture

’

.
s
",

2,
b

» Previous normal mixture

Ha

» Most sequences find max

~ 7k
(2

T IBRT =i B0
O —IBAm =180

» They visit both modes

fi

Monte Carlo Methods with R: Monte Carlo Optimization [97]

Stochastic Approximation
Introduction

» We now consider methods that work with the objective function h

> Rather than being concerned with fast exploration of the domain ©.

» Unfortunately, the use of those methods results in an additional level of error

> Due to this approximation of h.

» But, the objective function in many statistical problems can be expressed as
> h(x) =E[H(z, 7))

> This is the setting of so-called missing-data models

Monte Carlo Methods with R: Monte Carlo Optimization [98]

Stochastic Approximation
Optimizing Monte Carlo Approximations

» If h(x) = E[H(x, Z)], a Monte Carlo approximation is
. 1 —
h — H 1)
()= Do)
> Z;'s are generated from the conditional distribution f(z|x).

» This approximation yields a convergent estimator of h(x) for every value of x

> This is a pointwise convergent estimator
> Its use in optimization setups is not recommended
> Changing sample of Z;’s = unstable sequence of evaluations

> And a rather noisy approximation to arg max h(x)

Monte Carlo Methods with R: Monte Carlo Optimization [99]

Stochastic Approximation
Bayesian Probit

Example: Bayesian analysis of a simple probit model

» Y € {0,1} has a distribution depending on a covariate X:
P(Y=1X=2)=1—F(Y =0/X =x) =0, + 01x) ,

> [llustrate with Pima. tr dataset, Y= diabetes indicator, X=BMI

» Typically infer from the marginal posterior

arg max/H @(90 + 91$n>yi@<—90 — 91$n>1_yi d91 = argmax h(90>
0o i 0o

> For a flat prior on 6 and a sample (x1,...,z,).

Monte Carlo Methods with R: Monte Carlo Optimization [100]

Stochastic Approximation
Bayesian Probit — Importance Sampling
» No analytic expression for A

» The conditional distribution of #; given 6, is also nonstandard

> Use importance sampling with a ¢ distribution with 5 df
> Take = 0.1 and ¢ = 0.03 (MLESs)

» Importance Sampling Approximation

M
~ 1 o\ o N—vis fam _
ho(0p) = i g HCD(QO + 072D (=0 — 07 w,) Vit (07, o)

m=1 =1

Monte Carlo Methods with R: Monte Carlo Optimization [101]

Stochastic Approximation
Importance Sampling Evaluation

» Plotting this approximation of h with ¢ samples simulated for each value of 6

> The maximization of the represented h function is not to be trusted as an
approximation to the maximization of h.

» But, if we use the same t sample for all values of 6

> We obtain a much smoother function

» We use importance sampling based on a single sample of Z;’s

> Simulated from an importance function g(z) for all values of x
> Fistimate h with

H(x, z).

IIMS

1
m “

Monte Carlo Methods with R: Monte Carlo Optimization [102]

Stochastic Approximation
Importance Sampling Likelihood Representation

Oe+00 Be-51
| N T O I |

» Top: 100 runs, different samples

» Middle: 100 runs, same sample

Oe+00 Be-51
I |

» Bottom: averages over 100 runs

Oe+00 4e-51
| Y I |

T T T T T
-4 -3 -2 -1 0

» The averages over 100 runs are the same - but we will not do 100 runs

» R code: Run pimax(25) from mcsm

Monte Carlo Methods with R: Monte Carlo Optimization [103]

Stochastic Approximation

Comments

Monte Carlo Methods with R: Monte Carlo Optimization [104]

Missing-Data Models and Demarginalization
Introduction

» Missing data models are special cases of the representation h(x) = E[H (z, Z)]

» These are models where the density of the observations can be expressed as

g(z]6) = /Z Fx, 218) dz.

» This representation occurs in many statistical settings

> Censoring models and mixtures
> Latent variable models (tobit, probit, arch, stochastic volatility, etc.)

> Genetics: Missing SNP calls

Monte Carlo Methods with R: Monte Carlo Optimization [105]

Missing-Data Models and Demarginalization
Mixture Model

Example: Normal mixture model as a missing-data model

» Start with a sample (x4, ..., z,)

» Introduce a vector (z1,...,z,) € {1,2}" such that
Pg(Zi:1):1—P9(Z¢:2>:1/4, XZ‘ZZZZNN(,LLZ,D,

» The (observed) likelihood is then obtained as E|H (x, Z)| for
1 3
H(x,z) H1 S oxp { = (i — m)?*/2} H2 Jexp {—(zi — p2)?/2} |

U 2= U 2=

» We recover the mixture model
1 3
ZN(Mla 1) -+ ZN(M% 1)

> As the marginal distribution of Xj.

Monte Carlo Methods with R: Monte Carlo Optimization [106]

Missing-Data Models and Demarginalization
Censored-Data Likelihood

Example: Censored—data likelihood
» Censored data may come from experiments

> Where some potential observations are replaced with a lower bound

> Because they take too long to observe.

» Suppose that we observe Y7, ..., Y,,, iid, from f(y — 0)

> And the (n — m) remaining (Y11, ...,Y,) are censored at the threshold a.

» The corresponding likelihood function is

L(ly) =[1 — F(a -6 ”me

> F' is the cdf associated with f

Monte Carlo Methods with R: Monte Carlo Optimization [107]

Missing-Data Models and Demarginalization
Recovering the Observed Data Likelihood

» [f we had observed the last n — m values
>Say z = (Zmat,---,2n), With 2z, > a (i=m+1,...,n),

> We could have constructed the (complete data) likelihood

L0y, 2) =[] fw—0) T] 1= -0).

» Note that

L(6ly) = E[L°(8ly, Z)] = / L]y, 2)k(zly. 6) dz.

> Where k(z|y,) is the density of the missing data
> Conditional on the observed data

> The product of the f(z; — 0)/[1 — F(a — 0)]’s

> f(z — 0) restricted to (a, +00).

Monte Carlo Methods with R: Monte Carlo Optimization [108]

Missing-Data Models and Demarginalization
Comments

» When we have the relationship

g(z]6) = /Z Fx, 218) dz.

> 7 merely serves to simplify calculations
> it does not necessarily have a specific meaning

» We have the complete-data likelihood L¢(0|x,z)) = f(x,z|0)
> The likelihood we would obtain

> Were we to observe (x,z),the complete data

» REMEMBER:
g(z]6) = /Z Fl,210) dz

Monte Carlo Methods with R: Monte Carlo Optimization [109]

The EM Algorithm
Introduction

» The EM algorithm is a deterministic optimization technique
> Dempster, Laird and Rubin 1977

» Takes advantage of the missing data representation

> Builds a sequence of easier maximization problems

> Whose limit is the answer to the original problem

» We assume that we observe X, . .. ~ ¢g(x|0) that satisfies

g(x]0) = /fx z|0) d

> And we want to compute 0 = arg max L(]x) = arg max ¢(x|6).

Monte Carlo Methods with R: Monte Carlo Optimization [110]

The EM Algorithm
First Details

» With the relationship g(x|0) = [, f(x,z]0)d
> (X, Z) ~ f(x,z|0)
» The conditional distribution of the missing data Z
> Given the observed data x is
k(z/0. %) = f(x,710)/9(x]0).
» Taking the logarithm of this expression leads to the following relationship
log L(9|X) =]Ego[log LC(9|X Z)] lEgO[log liEZ|9,X)l,
Obs. Data Complete Data Missing Data

» Where the expectation is with respect to k(z|6y, x).

» [n maximizing log L(6|x), we can ignore the last term

Monte Carlo Methods with R: Monte Carlo Optimization [111]

The EM Algorithm
[terations

» Denoting
Q(0]60, x) = Eg|log L(0]x, Z)],
» EM algorithm indeed proceeds by maximizing Q(0]6y, x) at each iteration
> If é(l) = argmax@) (0|6, x), é(o) — é(l)

» Sequence of estimators {é(j)}, where

0(j) = argmax@Q(0]0;_1))
» This iterative scheme
> Contains both an expectation step
> And a maximization step

> Giving the algorithm its name.

Monte Carlo Methods with R: Monte Carlo Optimization [112]

The EM Algorithm
The Algorithm

Pick a starting value é(o) and set m = 0.

Monte Carlo Methods with R: Monte Carlo Optimization [113]

The EM Algorithm
Properties

» Jensen'’s inequality = The likelihood increases at each step of the EM algorithm
L(0j11|%) > L(f5)]x).
> Equality holding if and only if Q(é(j—l—l)‘é(j)v X) = Q(é(jﬂé(]’), X).

» Every limit point of an EM sequence {é<j)} is a stationary point of L(0]x)

> Not necessarily the maximum likelihood estimator

> In practice, we run EM several times with different starting points.

» Implementing the EM algorithm thus means being able to
(a) Compute the function Q(¢'|0, x)

(b) Maximize this function.

Monte Carlo Methods with R: Monte Carlo Optimization [114]

The EM Algorithm
Censored Data Example

» The complete-data likelihood is

L(Oly,z) ocHeXp{ (y; — 0)?/2} H exp{—(z — 0)*/2},

1=m+1
» With expected complete-data 1og—hkelihood

Q(ewo,w———z —0) — = Z Eg,[(Z ,

1=1 z m+1
> the Z; are distributed from a normal N (,1) distribution truncated at a.

» M-step (differentiating Q(0]6y, y) in 6 and setting it equal to 0 gives
my + (n —m)Ey[Z)]
n

0 =

> With B[] = 0 + (A=

Monte Carlo Methods with R: Monte Carlo Optimization [115]

I(6a)

-30 25 20 -15 -10

-35

40

1.0

1.5

The EM Algorithm
Censored Data MLEs

» M sequence

guy = My T
n n

» Climbing the Likelihood

» R code

Monte Carlo Methods with R: Monte Carlo Optimization [116]

The EM Algorithm
Normal Mixture

» Normal Mixture Bimodal Likelithood
QO'0,x) = —= ZE@)+ (1= Z)(z — o)’ x| .

Solving the M-step then provides the closed-form expressions

py =Ky ZZ¢I¢|X /E@ ZZAX
i=1 i=1
and
= E, [Zu—zi)mx /Ee > (1= Z)x| .
i=1 i=1
Since

o(xi — p1)

EQ ZZ X| =)
Zil] (i —) + 3p(x; — p2)

Monte Carlo Methods with R: Monte Carlo Optimization [117]

The EM Algorithm
Normal Mixture MLEs

Lo
=
o
: :,;::;n:tm =
o S » EM five times with various starting points
5 ke

T ' » T'wo out of five sequences — higher mode

T80 —

800

= —1B50

=S / » Others — lower mode
o = % ~125p o

by = _ .-«.350/ 7 4?‘
- — R i) —EEn S

& -1 4] 1 2 3 4 5

Monte Carlo Methods with R: Monte Carlo Optimization [118]

Monte Carlo EM
Introduction

» [f computation Q(0]6y,x) is difficult, can use Monte Carlo

» For Zy,...,Zp ~ k(z|x, é(m)), maximize

T
. 1 .
Q(0]60,x) = T ;1 log L(0]x, z;)

» Better: Use importance sampling

> Since
9(x|0) f(x,z|0)
arg max L(0|x) = arg max log ———— = arg max log £ [x|,
g LAOPe) = s o8 i) — T 0 | Fx 1)
> Use the approximation to the log-likelihood
T

1 Le(0|x, z;)

log L(0|x) ~ —
0og (‘X) T Zz:; LC(9(0)|X, ZZ‘)’

Monte Carlo Methods with R: Monte Carlo Optimization [119]

Monte Carlo EM
Genetics Data

Example: Genetic linkage.
» A classic example of the EM algorithm

» Observations (z1, T9, T3, x4) are gathered from the multinomial distribution

1 01 1 0
M (n,§+z,1(1—9),1(1—9),1).

» Estimation is easier if the xq cell is split into two cells

> We create the augmented model

0 1 1 0
717 Z(l o 9)7 Z(l o ‘9)7 Z)

N | —

(Zb 22, X2, T3, $4) ~ M (n7
with x1 = 21 + 2.

> Complete-data likelihood: #?27%4(1 — §)*2++3
> Observed-data likelihood: (2 + 0)*10%4(1 — @)*2+*3

Monte Carlo Methods with R: Monte Carlo Optimization [120]

Monte Carlo EM
Genetics Linkage Calculations

» The expected complete log-likelihood function is

Eg[(Z2 4+ x4) log 0 + (z2 + 23) log(1 — 0)] = (2 +090x1 + :U4> log 0 + (x9 + x3) log(1 — @),

> which can easily be maximized in 6, leading to the EM step
A 90 T 90 T
0, = {2+90}/{2+90+$2+$3+$4} i

» Monte Carlo EM: Replace the expectation with
> Zm = % Z;ril Ziy Zi ™ B(I‘l, (90/(2 + (90))

» The MCEM step would then be
é?l p—

Zm
— Y
Zm T Lo+ T3+ T4

which converges to 01 as m grows to infinity:.

Monte Carlo Methods with R: Monte Carlo Optimization [121]

Monte Carlo EM
Genetics Linkage MLESs

R
I . . .
» Note variation in MCEM sequence
s | ol Mnrnvn)l'\ il el , , ,
£ [TV TRr » Can control with T simulations
3
______________________________________ » R code

iteration

Monte Carlo Methods with R: Monte Carlo Optimization [122]

Monte Carlo EM
Random effect logit model

Example: Random effect logit model
» Random effect logit model,

> y;; 1s distributed conditionally on one covariate x;; as a logit model

exp {Bxi; + u; }
P 1] — 1 175 Wiy — ’
(y‘j |x‘7 Y ﬁ) 1 4+ exp {ﬁl’zj -|—u2'}

> wu; ~ N(0,0?) is an unobserved random effect.

> (U, ..., U,) therefore corresponds to the missing data Z

Monte Carlo Methods with R: Monte Carlo Optimization [123]

Monte Carlo EM
Random effect logit model likelihood

» For the complete data likelihood with 6 = (3, o),
Q(Q’\H, X, Y> - Z ijE[ﬁlej + UZ‘ﬁ) o, X, Y]
i.j

— ZE[logl + exp{ﬁ’xij + Ui} B,0,%x,y]
]

—) E[U}|B.0,x,y]/20” — nlog o,

> it is impossible to compute the expectations in Uj.

» Were those available, the M-step would be difficult but feasible

» MCEM: Simulate the U;’s conditional on (3, 0, X,y from

exp {Zj YijUi — Uzz/2‘72}
7(ui| B, 0,%,y) [T, L+ exp {Bai; +)]

Monte Carlo Methods with R: Monte Carlo Optimization [124]

Monte Carlo EM
Random effect logit MLESs

4]
092 098 1.04
Y I

-3.0 -2.9 -2.8 2.7 -2.6 25

P » MCEM sequence

> Increases the number of Monte Carlo steps
at each iteration

LC
-292 -290 -288
I I I |

» MCEM algorithm

> Does not have EM monotonicity property

iteration

» Top: Sequence of B’s from the MCEM
algorithm

» Bottom: Sequence of completed likeli-
hoods

