
Introduction to the Bootstrap

1 Motivation

The traditional approach to statistical inference relies on idealized models and assumptions.
Often expressions for measures of accuracy such as the standard error are based on asymptotic
theory and are not available for small samples. A modern alternative to the traditional ap-
proach is the bootstrapping method, introduced by Efron (1979). The bootstrap is a computer-
intensive resampling method, which is widely applicable and allows the treatment of more
realistic models.

As a motivation, we first discuss four examples of situations in which the exact sampling
distribution of the statistic of interest is intractable. We will use these examples later to
illustrate the application of the bootstrapping method.

Example The accuracy of the sample mean

Data: Mouse data

◦ Survival times of 16 mice after a test surgery

◦ 7 mice in treatment group (new medical treatment)

◦ 9 mice in control group (no treatment)

Group Survival time (in days) Mean
Treatment 94 197 16 38 99 141 23 86.86
Control 52 104 146 10 51 30 40 27 46 56.22

Question: Did treatment prolong survival?

This question can be addressed by comparing the means for the two groups:

◦ X̄ − Ȳ = 30.63 indicates a life prolonging effect of the new treatment.

◦ Problem: samples show high fluctuation  need to assess accuracy of estimates

Statistical theory for sample means:

Suppose X1, . . . , Xn is an iid random sample with mean µ and variance σ2. Then the standard
error is the sample mean is

se(X̄) =
[
var(X̄)

] 1
2 =

σ√
n
.

This suggests to estimate the standard error of X̄ by

ŝe(X̄) =
s√
n
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where s2 = 1
n−1

∑n
i=1(Xi − X̄)2. The interpretation of the standard error as a measure of

statistical accuracy is based on the central limit theorem, which (under quite general conditions
on the distribution of the Xi) states that for large sample sizes n the sample mean X̄ is
approximately normally distributed,

X̄ ≈ N
(
µ, σ/

√
n
)
.

Thus we expect the mean X̄ to be within two standard errors of the mean µ about 95% of the
time. Substituting the above estimate for the standard error, we obtain a (1 − α) confidence
interval for µ,

X̄ ± tn−1, α
2

ŝe(X̄).

In the mouse data example, we are interested in the question whether the new treatment lead
to an increase in survival time. For this, we might consider the studentized test statistic

T =
X̄ − Ȳ√

ŝe(X̄)2 + ŝe(Ȳ )2
.

The observed value of T is 1.05, which indicates that the effect of the new treatment on survival
is not significant.

Problems:

◦ The exact distribution of the two-sample test statistic T is not known (there are a number
of approximations like Satterthwaite’s approximation).

Example Accuracy of the sample median

Suppose that we want to compare the treatment and the control group in the mouse data
example by their medians rather than their means. From the table above we find

med(X) = 94, med(Y ) = 46, and T ′ = med(X)−med(Y ) = 48.

In order to decide whether this is a significant difference, we need to quantify the accuracy of
the sample medians.

Statistical theory for sample medians

◦ Unlike in the case of the sample mean there is no small sample formula for the standard
error of the sample median.

◦ Suppose that the distribution P of the Xi is continuous with density p(x). Then for large
n, the median is approximately normally distributed,

med(X) ≈ N
(
mP ,

σ2

4n p(mP )2

)
,

where mP is the median of the distribution P (i.e. P(Xi ≤ mP ) ≥ 1
2

and P(Xi ≥ mP ) ≥ 1
2
).

Problems:
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◦ Are 7 (or 9) observations enough for the asymptotic approximation to work well?

◦ Can we reliably estimate the density p at mp?

◦ How does the estimation of the (asymptotic) standard error affect the width of the confidence
interval based on the normal approximation?

Example Maximum likelihood estimation using the EM algorithm

Consider a missing data problem with observed data Yobs and missing data Ymis. If observations
are missing at random, the maximum likelihood estimator is derived from the observed-data
log-likelihood function

ln(θ|Yobs) =

∫
p(Yobs, ymis|θ) dymis,

where p(yobs, ymis|θ) is the density of the complete data Y = (Yobs, Ymis)
T. For large samples,

the maximum likelihood estimator θ̂ is approximately normally distributed,

θ̂ − θ0 ≈ N (0, Iobs(θ0)
−1)

where θ0 is the true parameter (assuming the model is correct) and

Iobs(θ0) = −E
(

∂2ln(θ|Yobs)

∂θ2

∣∣∣∣
θ=θ0

)
is the observed information.

Problems:

◦ For many missing-data problems, the observed-data log-likelihood is too difficult to evaluate,
and inference is based on the iterative EM algorithm instead.

◦ The EM algorithm does not automatically provide standard errors associated with the
parameter estimates. The asymptotic covariance matrix Iobs(θ0)

−1 is not readily available
because the implementation of the EM algorithm is based on the complete-data problem
and does not require the evaluation of the observed-data log-likelihood or its derivatives.

◦ The EM algorithm can be extended to estimate also the observed information (eg SEM
algorithm). This can be cumbersome.

Example Number of modes of a density

Suppose that X1, . . . , Xn are an iid sample from a distribution P with continuous density p(x).
One important parameter of P is the number of modes of its density p(x). Multimodality of
the density indicates a heterogeneity in the data. As an illustration, we consider the following
example.

Data: Galaxy data

◦ Velocities in km/sec of 82 galaxies from 6 well-separated conic sections of an unfilled survey
of the Corona Borealis region.

◦ Multimodality in the distribution of velocities is evidence for voids and superclusters in the
far universe.
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In this example, the structure in the distribution of velocities corresponds to the spatial distri-
bution of galaxies in the far universe. Thus the question of existence of voids and superclusters
can be addressed by testing

H0 : nmode(p) = 1 vs Ha : nmode(p) > 1

where nmode(p) is the number of modes of the density.

The density of the velocities can be estimated nonparametrically by a kernel estimate

p̂K,h(x) =
1

nh

n∑
i=1

K
(

x−Xi

h

)
.

The bandwidth h determines the resolution of the density estimate. The following figure shows
kernel estimates of the galaxy data for three different bandwidths.
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As can be seen from the graphs, the number of modes exhibited by the density estimate p̂K,h

depends on the bandwidth h: For small h the estimate shows many modes some of which may
be attributed to chance variation in the data, whereas for large h the estimate is much smoother
but may exhibit too few modes due to oversmoothing. In particular, we can choose h large
enough such that p̂K,h only has one mode.

Let H1 be the minimal bandwidth which leads to a unimodal density estimate, that is,

nmode(p̂K,H1) = 1 and nmode(p̂K,h) > 1 for all h < H1.

Note that H1 depends on X and is thus a random variable. Furthermore, let h1 be the observed
value for H1. Large values of h1 indicate oversmoothing and thus multimodality of the true
density p. Thus H1 can be used as a test statistic for the above test problem and the null
hypothesis of unimodality is rejected at significance level α if

P(H1 > h1|H0) ≤ α.

Problem:

◦ Distribution of H1 under the null hypothesis H0 is unknown.

2 The Bootstrap Principle

The basic idea of the bootstrapping method is that, in absence of any other information about
the distribution, the observed sample contains all the available information about the underlying
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distribution, and hence resampling the sample is the best guide to what can be expected from
resampling from the distribution.

Suppose that a sample X = (X1, . . . , Xn)T is used to estimate a parameter θ of the distribution
and let θ̂ = s(X) be a statistic that estimates θ. For the purpose of statistical inference on
θ, we are interested in the sampling distribution of θ̂ (or certain aspects of it) so as to assess
the accuracy of our estimator or to set confidence intervals for our estimate of θ. In many
applications, however, the sampling distribution of θ̂ is intractable.

If the true distribution P were known, we could draw samples X(b), b = 1, . . . , B from P and
use Monte Carlo methods to estimate the sampling distribution of our estimate θ̂. Since P
is unknown and we cannot sample from it, the bootstrapping idea suggests to resample the
original sample instead. This distribution from which the bootstrap samples are drawn is the
empirical distribution.

The empirical distribution For an sample X1, . . . , Xn of independent real-valued random
variables with distribution P , we define a probability distribution P̂ by

P̂ (A) =
1
n

n∑
i=1

1A(Xi), for (appropriate) A ⊆ R.

P̂ is called the empirical distribution of the sample X. P̂ can be thought as the distribution
which puts mass 1/n on each observation Xi (for values that occurs more than once in the sample
the mass will be a multiple of 1/n). It follows that P̂ is a discrete probability distribution with
effective sample space {X1, . . . , Xn}.
It can be shown that P̂ is a nonparametric maximum likelihood estimator of P which justifies
to estimate P by P̂ if no other information about P is available (such as e.g. P belongs to a
parametric family).

Theoretical results: Let A ⊆ R (such that P (A) is defined, i.e. A belongs to the Borel σ-algebra).
Then we have

P̂ (A) → P (A) as n →∞.

This result is a direct consequence of the law of large numbers since

n P̂ (A) =
n∑

i=1

1A(Xi) ∼ Bin(n, P (A))

and thus P̂ (A) tends to its expectation P (A) as n →∞. This results can be strengthened to

sup
A∈I

∣∣P̂ (A)− P (A)
∣∣ → 0 as n →∞,

where I is the set of all intervals of R. In other words, the distribution P (A) can be approxi-
mated by P̂ (A) equally well for all A ∈ I.

Sampling from the empirical distribution P̂ : Suppose we want to draw an iid sample X∗ =
(X∗

1 , . . . , X
∗
n)T from P̂ . As we have noted above, P̂ puts mass 1/n on each observation Xi.

Thus when sampling from P̂ , the ith observation Xi in the original sample is selected with
probability 1/n. This leads to the following two-step procedure:
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◦ Draw i1, . . . , in independently from the uniform distribution on {1, . . . , n}.
◦ Set X∗

j = Xij and X∗ = (X∗
1 , . . . , X

∗
n)T.

In other words, we sample with replacement from the original sample X1, . . . , Xn.

The bootstrap principle Suppose that

◦ X = (X1, . . . , Xn)T is a random sample from a distribution P ,

◦ θ = t(P ) is some parameter of the distribution,

◦ θ̂ = s(X) is an estimator for θ.

For an evaluation of the statistical properties (such as bias or standard error) of the actual
estimate θ̂, we wish to estimate the sampling distribution of θ̂.

The bootstrapping method mimics the data-generating process by sampling from an estimate
P̂ of the unknown distribution P . Thus the role of the above real quantities is taken by their
analogous quantities in the “bootstrap world”:

◦ X∗ = (X∗
1 , . . . , X

∗
n)T is a bootstrap sample from P̂ ,

◦ θ∗ = t(P̂ ) is the parameter in the bootstrap world,

◦ θ̂∗ = s(X∗) is the bootstrap replication of θ.

The sampling distribution of θ̂ is then estimated by its bootstrap equivalent

P̂(θ̂ ∈ A) = P∗(θ̂∗ ∈ A).

The bootstrap principle can be summarized by the following schematic diagram:

Real World Bootstrap World

Unknown
probability
distribution

Observed random
sample

Empirical
distribution

Bootstrap
sample

Statistic of interest Bootstrap replication

P −→ X = (X1, . . . , Xn) P̂ −→ X∗ = (X∗
1 , . . . , X

∗
n)=⇒

θ̂ = s(X) θ̂∗ = s(X∗)

↓ ↓

In general, the estimate P̂ will be determined by the available information about P . Only if the
data comprise all available information about P , we estimate P by the empirical distribution.

Monte Carlo Approximation: Even though the distribution of the bootstrap sample X∗ is
known, the evaluation of the exact bootstrap sampling distribution of θ̂∗ can be still intractable.
In fact, the sampling distribution has been derived only for special cases such as the median of
an uneven number of observations.

In general, the bootstrap estimate of the sampling distribution of θ̂ is computed using Monte
Carlo methods:
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◦ Draw B independent bootstrap samples X∗ (1), . . . , X∗ (B) from P̂ :

X
∗ (b)
1 , . . . , X∗ (b)

n
iid∼ P̂ b = 1, . . . , B

◦ Evaluate bootstrap replications

θ̂∗ (b) = s(X∗ (b)) b = 1, . . . , B

◦ Estimate the sampling distribution of θ̂ by the empirical distribution of the bootstrap repli-
cations θ̂∗ (1), . . . , θ̂∗ (B):

P̂(θ̂ ∈ A) =
1
B

B∑
b=1

1A

(
θ̂∗ (b)

)
.

for appropriate subsets A ⊆ Rp (if θ̂ ∈ Rp).

Often we are only interested in one characteristic of the sampling distribution of θ̂, for example
the standard error or the bias. Estimates for these quantities can be straightforwardly obtained
from the bootstrap replications.

The bootstrap algorithm for estimating standard errors Let θ̂ = s(X) be an estimator
for θ and suppose we want to know the standard error of θ̂. A bootstrap estimate of standard
error can be obtained by the following algorithm:

◦ Draw B independent bootstrap samples X∗ (1), . . . , X∗ (B) from P̂ :

X
∗ (b)
1 , . . . , X∗ (b)

n
iid∼ P̂ b = 1, . . . , B.

◦ Evaluate the bootstrap replications

θ̂∗ (b) = s(X∗ (b)) b = 1, . . . , B.

◦ Estimate the standard error se(θ̂) by the standard deviation of the B replications

ŝeboot(θ̂) =

[
1

B − 1

B∑
b=1

(
θ̂∗ (b) − θ̂∗ (·)

)] 1
2

,

where

θ̂∗ (·) =
1
B

B∑
b=1

θ̂∗ (b).

Example Mouse data

As an example, consider the mouse data and suppose that we want to assess in the accuracy
of the sample mean of the treatment group.

Applying the above algorithm for estimating the standard error, we first have to resample from
the original seven observations and calculate for each bootstrap sample the sample mean. The
following table shows the first 20 (out of B = 1000) bootstrap samples and their sample mean:
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b X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X∗

6 X∗
7 X̄∗

1 38 141 94 16 99 197 23 86.9
2 94 23 197 16 141 38 94 86.1
3 16 141 94 23 94 38 99 72.1
4 16 94 94 23 99 197 16 77.0
5 38 141 16 99 16 141 141 84.6
6 197 16 197 94 16 16 16 78.9
7 99 23 94 23 38 197 99 81.9
8 38 38 38 23 16 99 38 41.4
9 23 38 141 94 23 94 23 62.3

10 38 23 141 94 38 141 197 96.0
11 38 38 38 99 197 141 141 98.9
12 38 23 38 99 23 38 99 51.1
13 23 94 197 99 99 16 99 89.6
14 38 16 16 38 141 38 141 61.1
15 94 38 16 94 23 38 141 63.4
16 23 197 94 16 38 99 99 80.9
17 38 99 16 38 16 197 38 63.1
18 197 16 141 16 16 94 197 96.7
19 141 38 94 197 38 23 16 78.1
20 23 99 23 16 197 99 23 68.6

From the bootstrap replications X̄∗ (b), b = 1, . . . , B, we obtain a bootstrap estimate for the
standard error of the sample mean

ŝeboot(X̄) =
1

B − 1

B∑
i=1

(
X̄∗ (b) − X̄∗ (·))2

= 23.53.

Note that this is a Monte Carlo approximation to the ideal bootstrap estimate, which in the
special case of the sample mean is given by

ŝeboot(X̄) =
1
n2

n∑
i=1

(
Xi − X̄

)2
= 23.36.

The two estimates agree quite well.

The ideal bootstrap estimate of standard error for linear statistics In the special case
of linear statistics, we can evaluate the ideal bootstrap estimate of standard error. For this,
suppose that our statistic of interest is of the form

θ̂ =
1
n

n∑
i=1

α(Xi).

Then the bootstrap statistic is given by

θ̂∗ =
1
n

n∑
i=1

α(X∗
i ) =

1
n

n∑
j=1

Njα(Xj).

where Nj is the observed frequency of Xj in the bootstrap sample X∗
1 , . . . , X

∗
n. Since Xi is

resampled with probability 1
n
, the frequencies N = (N1, . . . , Nn) are multinomially distributed
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with parameter ( 1
n
, . . . , 1

n
) and we have

E(Ni) = 1,

cov(N1, Nj) =

{
1− 1

n if i = j
− 1

n if i 6= j
.

It follows that

E
∗(θ̂∗) =

1
n

n∑
j=1

E(Nj)α(Xj) =
1
n

n∑
j=1

α(Xj) = θ̂,

var∗(θ̂) =
1
n2

n∑
i,j=1

α(Xi) α(Xj) cov(Ni, Nj)

=
1
n2

n∑
i

α(Xi)
2 − 1

n3

( n∑
i

α(Xi)
)2

=
1
n2

n∑
i

(
α(Xi)− α(·)

)2

where

α(·) =
1
n

n∑
j=1

α(Xj) = θ̂.

Thus the ideal bootstrap estimate of standard error is basically the same as the usual estimate

ŝe(θ̂) = s/
√

n (up to a factor
(

n−1
n

) 1
2 ):

ŝeboot(θ̂) =
(

n− 1
n

) 1
2
ŝe(θ̂).

The bootstrap estimate of bias Suppose that we estimate the parameter θ = t(P ) by the
statistic

θ̂ = s(X).

The bias of the estimator θ̂ is defined as

bias(θ̂) = E(θ̂)− θ.

Substituting the empirical distribution P̂ for P , we obtain the bootstrap estimate of bias

b̂ias(θ̂) = bias∗(θ̂∗) = E∗(θ̂∗)− θ∗,

where θ∗ = t(P̂ ). Note that θ̂ and θ∗ can be different. As an example, consider the trimmed
mean as an estimate of the mean θ = E(X1). The trimmed mean is given by

θ̂p =
1
np

n∑
i=1

X(i) 1{np
2
≤ i ≤ n(1−p)

2
} with np =

n∑
i=1

1{np
2
≤ i ≤ n(1−p)

2
}.

On the other hand, the parameter θ∗ in the bootstrap world is the expectation of an observation
drawn from P̂ und thus is equal to the sample mean of X,

θ∗ = E∗(Xj) = X̄.
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Example Trimmed mean of exponentially distributed observations

Consider observations X1, . . . , X100 independently sampled from an unknown distribution P
(Figure (a) below). The mean of P can be estimated by the trimmed mean

θ̂0.1 =
1
90

95∑
i=6

X(i).

To estimate the bias of θ̂0.1 we have created B = 1000 bootstrap samples X∗ and for each
computed the corresponding trimmed mean θ̂∗0.1. The estimated sampling distribution of θ̂0.1 is
shown in Figure (b) below.
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(a) Estimated density of the observations X1, . . . , X100 and (b) estimated sampling distribution of
the trimmed mean θ̂0.1 (based on B = 1000 bootstrap replications).

The bootstrap estimate of the bias is given by

b̂ias(θ̂0.1) =
1
B

B∑
b=1

θ̂
∗ (b)
0.1 − X̄ = −0.1058.

The estimate of bias can be used to correct the original estimate θ̂ = 0.8042 such that it
becomes less biased. The obvious bias-corrected estimator is

θ̃0.1 = θ̂0.1 − b̂ias(θ̂0.1).

For the above data, we obtain with θ̂0.1 = 0.8042 the corrected estimate θ̃0.1 = 0.9101.

Example Allele frequency estimation
Consider again the ABO blood type data Nobs = (NA, NB, NAB, NO). By application of the EM
algorithm, we were able to compute the maximum likelihood estimates for the allele frequencies
pA, pB, pO:

p̂A = 0.2136 p̂B = 0.0501 p̂O = 0.7363.

Asymptotic theory for maximum likelihood estimation implies that these estimators are ap-
proximately normally distributed and thus suggests to take

p̂A ± zα/2 · ŝe(p̂A),

as an approximate (1 − α) confidence interval for pA with similar confidence intervals for pB

and pO. Since the EM algorithm does not provide an estimate for the standard error, we can
apply the bootstrapping method to obtain an estimate for se(p̂A).
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◦ Draw bootstrap sample N∗
obs = (N∗

A, N∗
B, N∗

AB, N∗
O)T:

N∗
obs ∼ M

(
n, NA

n
, NB

n
, NAB

n
, NO

n

)
.

◦ Compute estimates p̂∗A, p̂∗B, p̂∗O using the EM algorithm.

◦ Iterate previous two steps B times.

◦ Estimate standard error of p̂A by

ŝe(p̂A) =

[
1

B − 1

B∑
b=1

(
p̂
∗ (b)
A − p̂

∗ (·)
A

)2
] 1

2

where

p̂
∗ (·)
A =

1
B

B∑
b=1

p̂
∗ (b)
A .

The following figure shows the bootstrap estimates of the sampling distributions of the param-
eter estimators for pA, pB, and pO.
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Estimates of the sampling distribution of the allele frequency estimators p̂A, p̂B, and p̂O: Kernel
estimate (solid), normal approximation (dashed), and histogram estimate (grey).

The normal approximation shows that the estimators are indeed approximately normally dis-
tributed. The bootstrap estimates of standard error thus lead to the following approximate
95% confidence interval for the parameters:

Parameter ML estimate Std error 95% confidence interval
p1 0.214 0.014 [0.187, 0.240]
p2 0.050 0.007 [0.037, 0.064]
p3 0.736 0.015 [0.708, 0.765]

These confidence intervals agree quite well with the posterior intervals obtained by the data
augmentation algorithm.

Remark: Note that application of maximum likelihood does not require that P belongs to the fitted
parametric family. For general P , the MLE θ̂ estimates the parameter

θ0 = argmax
θ∈Θ

E
(
log p(X|θ)

)
,
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where X is distributed according to P . The parameter θ0 characterizes the distribution Pθ which
comes closest to P (where “distance” is measured by the Kullback-Leibler distance). For the empirical
distribution P̂ we obtain

θ∗0 = argmax
θ∈Θ

E
∗( log p(X∗|θ)

)
= argmax

θ∈Θ

1
n

n∑
i=1

log p(Xi|θ),

that is, θ∗0 is equal to the maximum likelihood estimator θ̂.

The parametric bootstrap Suppose we know that the distribution P belongs to a parametric
family of distributions Pθ with densities p(x|θ). If θ̂ is an estimate of the true parameter, θ0

say, an obvious estimate of P is the distribution P̂ = Pθ̂ with density p(x|θ̂). In this case, we

can still use the bootstrapping method to obtain an estimate of the sampling distribution of θ̂
(or any statistic g(θ̂)). Our knowledge about P is incorporated into the bootstrap algorithm
by substituting the parametric distribution Pθ̂ for the empirical distribution. This is called the
parametric bootstrap:

◦ Draw B independent bootstrap samples X∗ (1), . . . , X∗ (B) from Pθ̂:

X
∗ (b)
1 , . . . , X∗ (b)

n
iid∼ Pθ̂ b = 1, . . . , B

◦ Evaluate bootstrap replications

θ̂∗ (b) = s(X∗ (b)) b = 1, . . . , B

◦ Estimate the sampling distribution of θ̂ by the empirical distribution of the bootstrap repli-
cations θ̂∗ (1), . . . , θ̂∗ (B):

P̂(θ̂ ∈ A) =
1
B

B∑
b=1

1A

(
θ̂∗ (b)

)
.

for appropriate subsets A ⊆ Rp (if θ̂ ∈ Rp).

Example Allele frequency estimation
Consider for the last time the ABO blood type data. According to the Hardy-Weinberg law,
the genotype counts N = (NAA, NAO, NBB, NBO, NAB, NO) are multinomially distributed with
parameters p2

A, 2pApO, p2
B, 2pBpO, 2pApB, and p2

O. Furthermore, NA = NAA + NAO and
NB = NBB +NBO. This defines a distribution for the observed data N∗

obs = (NA, NB, NAB, NO),
from which we can sample the bootstrap samples Nobs = (N∗

A, N∗
B, N∗

AB, N∗
O).

The parametric bootstrap yields the following estimates of standard error and 95% confidence
intervals for the allele frequencies:

Parameter ML estimate Std error 95% confidence interval
p1 0.214 0.014 [0.186, 0.240]
p2 0.050 0.012 [0.027, 0.074]
p3 0.736 0.017 [0.703, 0.769]
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3 Testing Hypotheses

Let X and Y be two samples from two possibly different, unknown distributions P and Q and
suppose that we want to test whether the two distributions are equal. Thus we have

H0 : P = Q vs Ha : P 6= Q.

Furthermore let us assume that T is an appropriate test statistic for this test problem. Then
if we observe the value T = t for the test statistic, the null hypothesis will be rejected at
significance level α if

P(T ≥ t) ≤ α

under the null hypothesis. In many applications, the sampling distribution of the test statistic
is not known (exactly) and the p-value cannot be calculated. This suggests to use the bootstrap
instead and estimate the p-value by

P̂(T ≥ t) = P∗(T ∗ ≥ t).

One complication which arises in bootstrapping test problems is that we need to sample under
the null hypothesis.

For the above test problem this can be achieved by resampling X∗ (b) and Y ∗ (b) from the joint
sample (X,Y ). From these bootstrap samples, we can then compute the bootstrap replications
of the test statistic

T ∗ (b) = s(X∗ (b), Y ∗ (b))

and estimate the p-value by

P̂(T ≥ t) =
1
B

B∑
b=1

1{T ∗ (b) ≥ t}.

Example Mouse data

Consider again the mouse data, where we were interested whether the new treatment prolonged
the survival time. One standard solution to this problem is to test for equality of the means of
the two groups, that is, to consider the test problem

H0 : µX = µY vs Ha : µX 6= µY .

Unlike in the situation above, the null hypothesis requires only equality in the means but not
e.g. in the variances. Obviously the means of the two groups are not equal, but this can be
corrected by a small transformation of the original data. Let

X̃i = Xi − X̄ + Z̄

Ỹi = Yi − Ȳ + Z̄

where

Z̄ =
1

nX + nY

[ nX∑
i=1

Xi +
nY∑
i=1

Yi

]
.

Obviously the empirical distributions of the two transformed samples X̃ and Ỹ have equal
means and thus satisfy the condition of the null hypothesis. We obtain the following bootstrap
algorithm:
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◦ Sample X
∗ (b)
1 , . . . , X

∗ (b)
nX independently from X̃.

◦ Sample Y
∗ (b)
1 , . . . , Y

∗ (b)
nY independently from Ỹ .

◦ Evaluate bootstrap replications

T ∗ (b) =
X̄∗ (b) − Ȳ ∗ (b)√

s2

X∗ (b)

nX
+

s2

Y ∗ (b)

nY

b = 1, . . . , B.

◦ Estimate the p-value

P̂(T ≥ t) =
1
B

B∑
b=1

1{T ∗ (b) ≥ t},

where t is the observed value of the two-sample t test statistic.

For the mouse data, the observed value of T was t = 1.06. From B = 1000 bootstrap replications
of T 133 were greater than or equal to t. Thus the bootstrap estimate of the p-value is

P̂(T ≥ t) = 0.133

and we do not reject the null hypothesis. Thus the observed difference in the means between
the two groups is not significant.
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Bootstrap estimate of the sampling distribution of the two-sample t test statistic for the mouse data.

Example Number of modes of a density

The Galaxy data consist of the velocities (in km/sec) of 82 galaxies from 6 well-separated
conic sections of an unfilled survey of the Corona Borealis region. As pointed out earlier, the
structure in the distribution of velocities corresponds to the spatial distribution of galaxies
in the far universe. In particular, a multimodal distribution of velocities indicates a strong
heterogeneity in the spatial distribution of the galaxies and thus is seen as evidence for the
existence of voids and superclusters in the far universe.

Statistically, the question of multimodality can be formulated as a test problem

H0 : nmode(p) = 1 vs Ha : nmode(p) > 1

where nmode(p) is the number of modes of the density of the velocities. To develop an appropriate
test statistic for this problem, we considered nonparametric kernel density estimates

p̂K,h(x) =
1

nh

n∑
i=1

K
(

x−Xi

h

)
.
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It can be shown that the number of modes of p̂K,h(x) decreases monotonically as h increases. For
the galaxy data, this relationship between the number of modes of p̂K,h(x) and the bandwidth
h is shown in the following figure.
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Let H1 be the minimal bandwidth for which p̂K,H1 is unimodal, that is,

nmode(p̂K,H1) = 1 and nmode(p̂K,h) > 1 for all h < H1.

Furthermore, let h1 be the actual observed value for the galaxy data (h1 = 3.05). Since
multimodal densities need more smoothing to become unimodal, the minimal bandwidth H1

can be used as a test statistic for the above problem. The null hypothesis is rejected at
significance level α if the corresponding p-value is smaller than α:

P0(H1 > h1) ≤ α.

Since the sampling distribution of H1 is unknown, we use the bootstrapping method to estimate
the p-value. For this, we need to sample from an estimate of P0, the distribution under the
null hypothesis. Restricting ourselves to distributions with densities pK,h, we find that the

distribution P̂0 with density pK,h1(x) is in a sense closest to the empirical distribution P̂ as it
needs the least amount of smoothing. More precisely, it can be shown that

n∑
i=1

log pK,h1(Xi) ≤
n∑

i=1

log pK,h(Xi)

for all h > h1, that is, pK,h1(x) maximizes the log-likelihood under the restriction of unimodality
(within the class of distributions with densities pK,h).

Let Z∗ be a sample from the empirical distribution P̂ . Then

X
∗ (b)
i = Z∗

i + h1εi, i = 1, . . . , n,

is an iid sample from P̂0. Since the variance of the bootstrap sample has been increased by
adding the normal error term, the data are usually rescaled to have the sample variance as the
original observations. This leads to the following algorithm:

◦ Draw B independent bootstrap samples X∗ (1), . . . , X∗ (B) from P̂0:

X
∗ (b)
i = Z̄∗ +

(
1 + h2

1/σ̂
2
)− 1

2
(
Z∗

i − Z̄∗ + h1εi

)
, i = 1, . . . , n,

where Z∗
1 , . . . , Z

∗
n are independently sampled from P̂ and εi

iid∼ N (0, 1).

◦ Evaluate the bootstrap replications H
∗ (b)
1 for b = 1, . . . , B.

◦ Estimate the p-value (or achieved significance level) by

P̂(H1 ≥ h1) =
1
B

B∑
b=1

1{H∗ (b)
1 ≥ h1}.

◦ Reject the null hypothesis if P̂(H1 ≥ h1) ≤ 0.05.
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4 Confidence Intervals

Having generated the bootstrap replications θ̂∗ (1), . . . , θ̂∗ (B), we have an estimate of the sampling
distribution of θ̂. From this, we can construct confidence intervals for θ.

Standard confidence interval: Suppose that θ̂ is approximately normally distributed with mean
θ and variance se(θ̂)2. Then an approximate (1− α) confidence interval for θ is given by

θ̂L = θ̂ − zα/2 ŝeboot(θ̂) and θ̂U = θ̂ + zα/2 ŝeboot(θ̂),

where zα is the α critical value of the standard normal distribution.

Bootstrap t interval: Again suppose that θ̂ is approximately normally distributed with mean θ
and variance se(θ̂)2. Furthermore let ŝeX(θ̂) be an estimator of se(θ̂) based on the sample X.
From the bootstrap samples X∗ (b), we then calculate

T ∗ (b) =
θ̂∗ (b) − θ̂

ŝeX∗(θ̂)
.

From these values T ∗ (b), we can estimate the critical values t1−α/2 and tα/2 by t̂1−α/2 and t̂α/2,
respectively, such that

1
B

B∑
b=1

1{T ∗ (b) ≤ t̂1−α/2} ≈
α

2
and

1
B

B∑
b=1

1{T ∗ (b) ≥ t̂α/2} ≈
α

2
.

Then

θ̂L = θ̂ + t̂1−α/2se(θ̂) and θ̂U = θ̂ + t̂α/2se(θ̂)

defines an approximate (1− α) confidence interval for θ.

Percentile interval: The (1− α) confidence interval [θ̂L, θ̂U ] is given by the empirical quantiles
of the boostrap replications, that is,

P̂
∗(θ̂∗ ≤ θ̂L) =

1
B

B∑
b=1

1{θ̂∗ (b) ≤ θ̂L} ≈
1
2

α,

P̂
∗(θ̂∗ ≥ θ̂U) =

1
B

B∑
b=1

1{θ̂∗ (b) ≥ θ̂U} ≈
1
2

α.

Bias corrected percentile interval: The confidence interval should have equal probability to both
sides of θ̂, that is,

P(θ̂ ≤ θ ≤ θ̂U) = P(θ̂L ≤ θ ≤ θ̂).

If θ̂ is not the median of the boostrap distribution, this condition is not fulfilled. An appropriate
correction is given by

1
B

B∑
b=1

1{θ̂∗ (b) ≤ θ̂L} ≈ Φ(2 z∗ − zα/2)

1
B

B∑
b=1

1{θ̂∗ (b) ≤ θ̂U} ≈ Φ(2 z∗ + zα/2),
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where Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution
and

z′∗ = Φ−1

(
1
B

B∑
b=1

1{θ̂∗ (b) ≤ θ̂}
)

= Φ−1

(
#{θ̂∗ (b) ≤ θ̂}

B

)
.

Roughly speaking, z0 measures the discrepancy between the median of θ̂∗ and θ̂ in normal units.

There exists an extension of the bias corrected percentile interval, the BCa interval (eg Efron
and Tibshirani, 1993).
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