

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis

Matteo Berti matteo.berti11@studio.unibo.it

> LM Informatica A.A. 2018/2019

Despite there are **many side-channels attacks** (electromagnetic, power-monitoring, timing, optical, <u>acoustic</u>, ...), **this research** is interesting because it is the **only** available **source** on acoustic cryptanalysis **of a cryptosystem**.

We will cover the following sections:

- Introduction
- Foundations of the attack
- Further detail on the cryptanalysis
- Problems
- Error detection
- Attack mitigation

CPUs change power according to the **type of operations** they perform.

Electronic components in the computers generate vibrations.

The **bandwidth** of these signals is **very low**:

GnuPG operations can be identified by their acoustic frequency spectrum.

GPG RSA **secret keys** can be **distinguished** by the **sound** they made.

Therefore, the attack requires **ciphertexts** adaptively **chosen by** the **attacker**:

Chosen-ciphertext channel by email.

A suitable ciphertext **attack vector** is:

OpenPGP encrypted email messages.

Enigmail: Thunderbird **plugin** that **automatically decrypts incoming** email for notification purposes.

Other ways to eavesdrop secret keys:

- A **mobile device** remotely **compromised**, which record the target computer noise.

The target computer if compromised may spy on itself.

Three levels of recording accuracy:

 Lab-grade setup: Brüel&Kjær condenser microphones with 3 capsules (350kHz, 40kHz, 21kHz):

 Portable setup: same Brüel&Kjær capsules as before but replaced some components to fit in a briefcase (100kHz).

Three levels of recording accuracy:

Mobile-phone setup: were used several Android smartphones (24kHz).

Distant acquisition:

 Parabolic microphones: increase effective range from 1 meter to 4 meter.

Recall on RSA cryptosystem:

- 2 large random primes **p** and **q**
- 2 numbers **e** and **d** such that $ed = 1 \mod \varphi(n)$ and n = pqEncryption: $m^e \mod n$ Decryption: $c^d \mod n$

public key

pk = (*n*, e)

secret key

sk = (d, p, q)

The *signature* is computed:

Each signature has a unique spectral signature (2 signatures and 4 modules above).

The attack exposes the **secret factor q one bit at a time**, from MSB to LSB.

For each bit q_i we assume that $q_{2048} \dots q_{i+1}$ were correctly recovered, and check if q_i is 0 or 1.

Eventually, we learn all of q and recover the factorization of n.

The same technique applies to p, but q has a better signal.

Let **g**^{i,1} be the **ciphertext** whose **topmost i**–1 **bits** are correctly **recovered from q**, the **i**-th bit is 0, and the **remaining** (low) **bits** are 1.

Moreover **RSA keys** in GPG have **MSB** of **q** is **set**: $q_{2048} = 1$

Algorithm 1 GnuPG's modular exponentiation (see function mpi_powm in mpi/mpi-pow.c). **Input:** Three integers c, d and q in binary representation such that $d = d_n \cdots d_1$. **Output:** $m = c^d \mod q$. 1: **procedure** MODULAR_EXPONENTIATION(c, d, q)if $SIZE_IN_LIMBS(c) > SIZE_IN_LIMBS(q)$ then 2: $c \leftarrow c \mod q$ 3: $m \leftarrow 1$ 4: for $i \leftarrow n$ downto 1 do 5: $m \leftarrow m^2$ 6: if $SIZE_IN_LIMBS(m) > SIZE_IN_LIMBS(q)$ then 7: $m \leftarrow m \mod q$ 8: if size_in_limbs(c) < KARATSUBA_THRESHOLD then 9: \triangleright defined as 16 $t \leftarrow \text{MUL}_{\text{BASECASE}}(m, c)$ \triangleright Compute $t \leftarrow m \cdot c$ using Algorithm 3 10: else 11: $t \leftarrow \text{MUL}(m, c)$ \triangleright Compute $t \leftarrow m \cdot c$ using Algorithm 5 12:if SIZE_IN_LIMBS(t) > SIZE_IN_LIMBS(q) then 13: $t \leftarrow t \mod q$ 14: if $d_i = 1$ then 15: 16: $m \leftarrow t$ 17: return m 18: end procedure

A *limb* is the part of a multi-precision number that fits in a **single machine word**, normally a limb is **32** or **64 bits**.

When we **decrypt g^{i,1}**, i-th bit of q could be:

• $\mathbf{q}_i = \mathbf{1}$ then $g^{i,1} < q$ $\mathbf{q}_i^{i,1} = \mathbf{1}$ then $g^{i,1} < q$ $\mathbf{q}_i^{i,1} = \mathbf{1} = \mathbf{1} = \mathbf{1}$

If we assume **line 2** of Alg1 is **removed**.

- Line 3: $\mathbf{c} \leftarrow \mathbf{c} \mod \mathbf{q}$ returns \mathbf{c} because $\mathbf{c} = \mathbf{g}^{i,1} < \mathbf{q}$

1: procedure MODULAR_EXPONENTIATION(c, d, q)2: if size_iN_LIMBS(c) > size_iN_LIMBS(q) then 3: $c \leftarrow c \mod q$ 4: $m \leftarrow 1$

When we **decrypt g**^{i,1}, i-th bit of q could be:

• $\mathbf{q}_i = \mathbf{0}$ then $g^{i,1} \ge q$ $\mathbf{q}_i^{i,1} = \mathbf{q}_i^{i,1}$ $\mathbf{q}_i^{i,1} = \mathbf{q}_i^{i,1}$ $\mathbf{q}_i^{i,1} = \mathbf{q}_i^{i,1}$

If we assume **line 2** of Alg1 is **removed**.

- Line 3: $\mathbf{c} \leftarrow \mathbf{c} \mod \mathbf{q}$ returns $\mathbf{c} - \mathbf{q}$ because $q \le q^{i,1} < 2q$

1: procedure MODULAR_EXPONENTIATION(c, d, q)2: if size_iN_LIMBS(c) > size_iN_LIMBS(q) then 3: $c \leftarrow c \mod q$ 4: $m \leftarrow 1$

The occurrence or not of **this reduction** will lead us to **distinguish** if the **bit** of **q** is **1** or **0**.

If we enable again line 2 of Alg1, we see line 3 is never taken.

This happens because **g**^{i,1} and **q** have the **same number of limbs** (64 each).

SIZE_IN_LIMS(c) > SIZE_IN_LIMBS(q) \rightarrow 64 > 64 \rightarrow FALSE

1: procedure MODULAR_EXPONENTIATION(c, d, q)2: if SIZE_IN_LIMBS(c) > SIZE_IN_LIMBS(q) then 3: $c \leftarrow c \mod q$

But we need the reduction to distinguish $q_i = 0$ from $q_i = 1$

This can be solved in either of two way.

 It could be added leading zero limbs to g^{i,1}, so line 3 will be always taken.

But the **algorithm** could be **q changed** to not allocate **g**^{i,1} leading zero limb.

It could be decrypted the 128 limb number g^{i,1} + n (the result would be the same) so line 3 will be always taken.

1: procedure MODULAR_EXPONENTIATION(c, d, q)2: if SIZE_IN_LIMBS $(c) > SIZE_IN_LIMBS(q)$ then 3: $c \leftarrow c \mod q$

As we can see in the figures when $q_i = 0$ the frequency of the modular exponentiation is **lower than** when $q_i = 1$.

To sum up what we have seen thus far:

1. Decrypt c (= g^{i,1} + n) on the target machine.

2. Measure acoustic leakage during decryption.

3. Recognize the difference between the two leakage patterns.

This can be done sending **email messages** with the **chosen ciphertext** backdated or marked as **spam**.

•)) ●<'``

Algorithm 2 Top loop of the (simplified) attack on GnuPG's RSA decryption.

Input: An RSA public key pk = (n, e) such that n = pq where n is an m bit number. **Output:** The factorization p, q of n.

1: procedure SIMPLIFIEDATTACK(pk)
2:
$$g \leftarrow 2^{(m/2)-1}$$
 \triangleright g is a $m/2$ bit number of the form $g = 10 \cdots 0$
3: for $i \leftarrow m/2 - 1$ downto 1 do
4: $g^{i,1} \leftarrow g + 2^{i-1} - 1$ \triangleright set all the bits of g starting from $i - 1$ -th bit to be 1
5: $b \leftarrow \text{DECRYPT_AND_ANALYZE_LEAKAGE_OF_Q}(g^{i,1} + n)$ \triangleright obtain the *i*-th bit of q
6: $g \leftarrow g + 2^{i-1} \cdot b$ \triangleright update g with the newly obtained bit
7: $q \leftarrow g$
8: $p \leftarrow n/q$
9: return (p,q)

12:

Further detail on the cryptanalysis

But exactly what makes the **difference** in the **acoustic frequency** when the bit attacked is 1 or 0?

To understand this we need to go **deeper** in the **modular exponentiation** algorithm.

The algorithm consists of **two main** multiplication **routines**: - A **basic schoolbook** multiplication routine (for short ciphertexts).

- A **recursive Karatsuba** multiplication algorithm (for large ciphertexts).

MODULAR_EXPONENTIATION9:if $SIZE_IN_LIMBS(c) < KARATSUBA_THRESHOLD then$ 10: $t \leftarrow MUL_BASECASE(m, c)$ 11:else

 $t \leftarrow \text{MUL}(m, c)$

 $\triangleright \text{ Compute } t \leftarrow m \cdot c \text{ using Algorithm 5}$

Algorithm 3 GnuPG's basic multiplication code (see functions mul_n_basecase and mpihelp_mul in mpi/mpih-mul.c).

Input: Two numbers $a = a_k \cdots a_1$ and $b = b_n \cdots b_1$ of size k and n limbs respectively.

Output: $a \cdot b$.

- 1: **procedure** MUL_BASECASE(a, b) for short ciphertexts
- if $b_1 \leq 1$ then 2: if $b_1 = 1$ then 3: 4: $p \leftarrow a$ else 5: $p \leftarrow 0$ 6: 7: else $p \leftarrow \text{MUL}_BY_SINGLE_LIMB(a, b_1)$ $\triangleright p \leftarrow a \cdot b_1$ 8: for $i \leftarrow 2$ to n do 9: if $b_i < 1$ then 10: if $b_i = 1$ then \triangleright (and if $b_i = 0$ do nothing) 11: $\triangleright p \leftarrow p + a \cdot 2^{32 \cdot i}$ $p \leftarrow \text{ADD}_WITH_OFFSET}(p, a, i)$ 12:13: else $\triangleright p \leftarrow p + a \cdot b_i \cdot 2^{32 \cdot i}$ $p \leftarrow \text{MUL}_\text{AND}_\text{ADD}_\text{WITH}_\text{OFFSET}(p, a, b_i, i)$ 14: return p15: 16: end procedure

STUDIORUM

Further detail on the cryptanalysis

Algorithm 5 GnuPG's multiplication code (see function mpihelp_mul_karatsuba_case in mpi/mpih-mul.c).

Input: Two numbers $a = a_k \cdots a_1$ and $b = b_n \cdots b_1$ of size k and n limbs respectively.

Output: $a \cdot b$.

 \rightarrow procedure MUL(a, b) for long ciphertexts if $n < KARATSUBA_THRESHOLD$ then \triangleright defined as 16 2: **return** MUL_BASECASE(a, b) \triangleright multiply using Algorithm 3 3: $p \leftarrow 0$ 4 $i \leftarrow 1$ 5: while $i \cdot n \leq k$ do 6: $t \leftarrow \text{KARATSUBA}_{\text{MUL}}(a_{i \cdot n} \cdots a_{(i-1) \cdot n+1}, b)$ \triangleright multiply *n* limb numbers using Algorithm 4 7: $p \leftarrow \text{ADD_WITH_OFFSET}(p, t, (i-1) \cdot n)$ $\triangleright p \leftarrow p + t \cdot 2^{32 \cdot (i-1) \cdot n}$ 8: $i \leftarrow i + 1$ 9: if $i \cdot n > k$ then 10: $t \leftarrow \text{MUL}(b, a_k \cdots a_{(i-1) \cdot n+1})$ \triangleright multiply the remaining limbs of *a* using a recursive call 11. $\triangleright p \gets p + t \cdot 2^{32 \cdot (i-1) \cdot n}$ $p \leftarrow \text{ADD_WITH_OFFSET}(p, t, (i-1) \cdot n)$ 12: return p13: 14: end procedure

Karatsuba recursive algorithm is a very efficient way to perform large integer multiplications.

Algorithm 4 GnuPG's Karatsuba multiplication code (see function mul_n in mpi/mpih-mul.c). **Input:** Two *n* limb numbers $a = a_n \cdots a_1$ and $b = b_n \cdots b_1$. **Output:** $a \cdot b$. \rightarrow procedure KARATSUBA_MUL(a, b)if $n < KARATSUBA_THRESHOLD$ then \triangleright defined as 16 2: **return** MUL_BASECASE(a, b) termination \triangleright multiply using Algorithm 3 3: if n is odd then 4: $\triangleright p \leftarrow (a_{n-1} \cdots a_1) (b_{n-1} \cdots b_1)$ 5: $p \leftarrow \text{KARATSUBA}_\text{MUL}(a_{n-1} \cdots a_1, b_{n-1} \cdots b_1)$ $\triangleright p \leftarrow p + (a_{n-1} \cdots a_1) \cdot b_n \cdot 2^{32 \cdot n}$ $p \leftarrow \text{MUL}_\text{AND}_\text{ADD}_\text{WITH}_\text{OFFSET}(p, a_{n-1} \cdots a_1, b_n, n)$ 6: $\triangleright p \leftarrow p + b \cdot a_n \cdot 2^{32 \cdot n}$ $p \leftarrow \text{MUL}_\text{AND}_\text{ADD}_\text{WITH}_\text{OFFSET}(p, b, a_n, n)$ 7: else 8: $- h \leftarrow \text{KARATSUBA}_\text{MUL}(a_n \cdots a_{n/2+1}, b_n \cdots b_{n/2+1})$ 9: $--- t \leftarrow \text{KARATSUBA}_\text{MUL}(a_n \cdots a_{n/2+1} - a_{n/2} \cdots a_1, b_{n/2} \cdots b_1 - b_n \cdots b_{n/2+1})$ 10: $l \leftarrow \text{KARATSUBA}_\text{MUL}(a_{n/2} \cdots a_1, b_{n/2} \cdots b_1)$ 11: $p \leftarrow (2^{2 \cdot 32 \cdot n} + 2^{32 \cdot n}) \cdot h + 2^{32 \cdot n} \cdot t + (2^{32 \cdot n} + 1) \cdot l$ 12: return p13: 14: end procedure

Each bit i in q could be:

- q_i = 1

In this case, following the multiplication routines to the Karatsuba algorithm:

The second operand **b** of the calls to MUL_BASECASE resulting from the recursive calls will contain mostly zero limbs.

KARATSUBA_MUL

- 2: if $n < KARATSUBA_THRESHOLD$ then
- 3: return MUL_BASECASE $(a, b) \rightarrow$ mostly 0s

Each bit i in q could be:

 $- q_i = 0$

In this case, following the multiplication routines to the Karatsuba algorithm:

The second operand **b** of the calls to MUL_BASECASE resulting from the recursive calls will contain mostly (random-looking) non-zero limbs.

KARATSUBA_MUL

- 2: if $n < KARATSUBA_THRESHOLD$ then
- 3: **return** MUL_BASECASE $(a, b) \rightarrow$ mostly non-0s

- Axis X: attacked **bit of q** Axis Y: **#** of **zero limbs** in the **2° operand** of **MUL_BASECASE**
- **Large** number of *zero* limbs \rightarrow q_i = 1
- **Low** number of **zero limbs** \rightarrow q_i = **0**

The drastic change in the number of non-zero limbs in the second operand of MUL_BASECASE is detectable by our side channel measurements.

Observation: generating **2 random ciphertexts** of respectively **63 limbs** and **57 limbs** (non-zero limbs):

63-limb ciphertext

57-limb ciphertext

Decryption of the **63-limb** ciphertext produces a **signal** at **lower frequency** than the decryption of the **57-limb** ciphertext.

It can be found the num of limbs in the 2° operand of MUL.

Therefore: the **shorter** the **number** of **limbs** (in 2° operand) the **higher** the **frequency** of the acoustic leakage, and the **weaker** the **signal strength**.

We can **acoustically detect** when the 2° operand of MUL_BASECASE has **many non-zero limbs** ($q_i = 0$) or when it has **few non zero-limbs** ($q_i = 1$).

Unfortunately, there is a problem:

Distinguishing the **above two cases** using *side channel leakage* **is particularly hard for bits** in the rage of **1850–1750**.

This complication requires us to use additional tricks.

Problems

When it's used $c = g^{i,1} + n$, bits in range [1850 - 1750] emit very similar frequencies with a distance of nearly 200Hz.

The bit index where this crossing point occurs depends on the specific values of the ciphertext used!

Let g^{i,0} be **2048-bit number** whose **top i-1 bits** are the **same as q**, its **i-th bit is 1** and all **the rest** of its bits **are 0**.

Using **g**^{i,0} it is now **possible to distinguish** the **bits** in the range of **1750–1850** thus allowing our attack to proceed.

Problems

Algorithm 6 Extracting all bits from GnuPG's implementation of 4096-bit RSA-CRT. **Input:** A an RSA public key pk = (n, e) such that n = pq where n is an m bit number. **Output:** The factorization p, q of n. 1: procedure ATTACKALLBITS(pk) $q \leftarrow 2^{(m/2)-1}$ \triangleright g is a m/2 bit number of the form $g = 10 \cdots 0$ 2: for $i \leftarrow m/2 - 1$ downto 1 do 3: $q^{i,1} \leftarrow q + 2^{i-1} - 1$ \triangleright set all the bits of g starting from i - 1-th bit to be 1 4: $g^{i,0} \leftarrow g + 2^{i-1}$ \triangleright set the *i*-th bit of *g* to be 1 5: if $1750 \le i \le 1850$ then 6: $b \leftarrow \text{decrypt_and_analyze_leakage_of_q}(g^{i,0} + n)$ \triangleright obtain the *i*-th bit of *q* using $g^{i,0}$ 7: else 8: $b \leftarrow \text{decrypt_and_analyze_leakage_of_q}(g^{i,1} + n)$ \triangleright obtain the *i*-th bit of *q* using $q^{i,1}$ 9: $q \leftarrow q + 2^{i-1} \cdot b$ \triangleright update q with the newly obtained bit 10:11: $q \leftarrow q$ $p \leftarrow n/q$ 12:return (p,q)13: 14: end procedure

The attack proceeds in two stages:

1. Calibration stage

The attacker generates two ciphertexts corresponding to a **leakage of 0 and 1 bits** of q and **obtains multiple samples of** their **decryption**.

The attacker **generates a template of the leakage** caused by 0 bit and a template of the leakage caused by a 1 bit.

Problems

2. Attack stage

- Classification step

A spectrum of an obtained leakage is classified using the templates as corresponding to 0 bit or to a 1 bit. This might be repeated a few times.

- Template update step

New templates for 0 bits and 1 bits are generated **updating** the **old ones** with the new leakages.

(2 steps)

If by mistake some bit $q_j = 1$ is misclassified as 0, successive values of both $g^{i,1}$ and $g^{i,0}$ for all i < j will be always <u>smaller</u> than q.

This value will have the **same acoustic leakage** as if **q**_i**= 1**: next bits will result as **all 1s** regardless their actual value.

$$10100 \times ... \longrightarrow 1010010111111...$$

Solution: when a sequence (ex. 20 bits) of only 1s is detected, the attacker can backtrack some bits (ex. 50 bits) and try again.

If by mistake some bit $q_j = 0$ is misclassified as 1, successive values of both $g^{i,1}$ and $g^{i,0}$ for all i < j will be always <u>larger</u> than q.

This value will have the **same acoustic leakage** as if **q**_i**= 0**: next bits will result as **all 1s** regardless their actual value.

$$10100 \textcircled{8} \dots \longrightarrow 1010011000000 \dots$$

Solution: when a sequence (ex. 20 bits) of only 0s is detected, the attacker can backtrack some bits (ex. 50 bits) and try again.

Attack mitigation

Acoustic shielding: acoustic absorbers and sound-proof enclosures could attenuate the signals, but do not prevent the attack.

Noisy environment: noise in a noisy environment is below 10 kHz, acoustic leakage is well above this rage, such noises can be filtered out.

Parallel software load: perform the computation in parallel will move the leakage frequency from 35-38 kHz to 32-35 kHz (easier to detect).

Ciphertext randomization: instead of decrypting c, given a 4096-bit random value r, one can **decrypt** $r^{e} \cdot c$ and **multiply** the **result by** r^{-1} .

Ciphertext normalization: it can be **removed** all **leading zeros** of **c** and **decrypt c'** = c mod n. This value will have the **same limb** count **as q**, **line 2** of Alg1 will be **never taken**, making it **impossible** to use the modular reduction in order to **create a connection**.

Conclusion

- It's possible with **some version of GPG RSA** (1.x) to attack a secret key with acoustic cryptanalysis.
- It's **neither easy** nor **practical**.
- To carry out this kind of attack is required **time** and **effort**.
- It could be **mitigated**.

BUT IT IS POSSIBLE WITH A SMARTPHONE TO FIND AN RSA SECRET KEY!

References

[1] <u>Daniel Genkin, Adi Shamir and Eran Tromer, RSA Key Extraction via</u> <u>Low-Bandwidth Acoustic Cryptanalysis. CRYPTO 2014</u>

[2] <u>Adi Shamir, Eran Tromer, Acoustic Cryptanalysis - On nosy people and noisy machines</u>