
Esercizio 1
Caricare l'immagine dal modulo , rinormalizzandola nel range .
Applicare un blur di tipo gaussiano con deviazione standard il cui kernel ha dimensioni utilizzando
le funzioni fornite , ed .

Aggiungere rumore di tipo gaussiano, con deviazione standard , usando la funzione .

Calcolare il Peak Signal Noise Ratio (PSNR) ed il Mean Squared Error (MSE) tra l'immagine degradata e
l'immagine originale usando le funzioni e
disponibili nel modulo .

camera() skimage.data [0,1]
3 24 × 24

gaussian_kernel

()

psf_fft() A()

0.02 np.random

.normal()

peak_signal_noise_ratio mean_squared_error
skimage

.metrics

In [1]:
import numpy as np
import matplotlib.pyplot as plt
from skimage import data, metrics
from scipy import signal
from numpy import fft

In [2]:
Crea un kernel Gaussiano di dimensione kernlen e deviazione standard sigma
def gaussian_kernel(kernlen, sigma):
 x = np.linspace(- (kernlen // 2), kernlen // 2, kernlen)
 # Kernel gaussiano unidmensionale
 kern1d = np.exp(- 0.5 * (x**2 / sigma))
 # Kernel gaussiano bidimensionale
 kern2d = np.outer(kern1d, kern1d)
 # Normalizzazione
 return kern2d / kern2d.sum()

Esegui l'fft del kernel K di dimensione d aggiungendo gli zeri necessari
ad arrivare a dimensione shape
def psf_fft(kern2d, d, shape):
 # Aggiungi zeri
 K_p = np.zeros(shape)
 K_p[:d, :d] = kern2d

 # Sposta elementi
 p = d // 2
 K_pr = np.roll(np.roll(K_p, -p, 0), -p, 1)

 # Esegui FFT
 K_otf = fft.fft2(K_pr)
 return K_otf

Moltiplicazione per A
def A(x, K):
 x = fft.fft2(x)
 return np.real(fft.ifft2(K * x))

Moltiplicazione per A trasposta
def AT(x, K):
 x = fft.fft2(x)
 return np.real(fft.ifft2(np.conj(K) * x))

In [3]:
Immagine in floating point con valori tra 0 e 1
X = data.camera().astype(np.float64) / 255.0
m, n = X.shape

Genera il filtro di blur
K = psf_fft(gaussian_kernel(24, 3), 24, X.shape)

Genera il rumore
sigma = 0.02
noise = np.random.normal(size=X.shape) * sigma

Aggiungi blur e rumore
b = A(X, K) + noise
PSNR = metrics.peak_signal_noise_ratio(X, b)
ATb = AT(b, K)

Visualizziamo i risultati
plt.figure(figsize=(30, 10))

ax1 = plt.subplot(1, 2, 1)
ax1.imshow(X, cmap='gray', vmin=0, vmax=1)
plt.title('Immagine Originale')

ax2 = plt.subplot(1, 2, 2)
ax2.imshow(b, cmap='gray', vmin=0, vmax=1)
plt.title(f'Immagine Corrotta (PSNR: {PSNR:.2f})')

plt.show()

In [4]:
PSNR = metrics.peak_signal_noise_ratio(X, b)
MSE = metrics.mean_squared_error(X, b)
print('This is the MSE: ', MSE)
print('This is the PSNR: ', PSNR)

Esercizio 2: Function

Importare la function da e visualizzarne l'help.

Usando la function con il metodo minimizzare la funzione definita come:

Analizzare la struttura restituita in output dalla function .

minimize

minimize scipy

.optimize
minimize C′ G′ f : Rn

→ R
f(x) =

(∑
i

n

xi

− 1)2

minimize

This is the MSE: 0.0029635809347257377
This is the PSNR: 25.2818320777883

In [5]:
from scipy.optimize import minimize
help(minimize)
Help on function minimize in module scipy.optimize._minimize:

minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, con
straints=(), tol=None, callback=None, options=None)
 Minimization of scalar function of one or more variables.

 Parameters

 fun : callable
 The objective function to be minimized.

 ``fun(x, *args) -> float``

 where x is an 1-D array with shape (n,) and `args`
 is a tuple of the fixed parameters needed to completely
 specify the function.
 x0 : ndarray, shape (n,)
 Initial guess. Array of real elements of size (n,),
 where 'n' is the number of independent variables.
 args : tuple, optional
 Extra arguments passed to the objective function and its
 derivatives (`fun`, `jac` and `hess` functions).
 method : str or callable, optional
 Type of solver. Should be one of

 - 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
 - 'Powell' :ref:`(see here) <optimize.minimize-powell>`
 - 'CG' :ref:`(see here) <optimize.minimize-cg>`
 - 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>`
 - 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>`
 - 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>`
 - 'TNC' :ref:`(see here) <optimize.minimize-tnc>`
 - 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>`
 - 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>`
 - 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
 - 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>`
 - 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>`
 - 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
 - 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
 - custom - a callable object (added in version 0.14.0),
 see below for description.

 If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
 depending if the problem has constraints or bounds.
 jac : {callable, '2-point', '3-point', 'cs', bool}, optional
 Method for computing the gradient vector. Only for CG, BFGS,
 Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
 trust-exact and trust-constr. If it is a callable, it should be a
 function that returns the gradient vector:

 ``jac(x, *args) -> array_like, shape (n,)``

 where x is an array with shape (n,) and `args` is a tuple with
 the fixed parameters. Alternatively, the keywords
 {'2-point', '3-point', 'cs'} select a finite
 difference scheme for numerical estimation of the gradient. Options
 '3-point' and 'cs' are available only to 'trust-constr'.
 If `jac` is a Boolean and is True, `fun` is assumed to return the
 gradient along with the objective function. If False, the gradient
 will be estimated using '2-point' finite difference estimation.
 hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional
 Method for computing the Hessian matrix. Only for Newton-CG, dogleg,
 trust-ncg, trust-krylov, trust-exact and trust-constr. If it is
 callable, it should return the Hessian matrix:

 ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``

 ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``

 where x is a (n,) ndarray and `args` is a tuple with the fixed
 parameters. LinearOperator and sparse matrix returns are
 allowed only for 'trust-constr' method. Alternatively, the keywords
 {'2-point', '3-point', 'cs'} select a finite difference scheme
 for numerical estimation. Or, objects implementing
 `HessianUpdateStrategy` interface can be used to approximate
 the Hessian. Available quasi-Newton methods implementing
 this interface are:

 - `BFGS`;
 - `SR1`.

 Whenever the gradient is estimated via finite-differences,
 the Hessian cannot be estimated with options
 {'2-point', '3-point', 'cs'} and needs to be
 estimated using one of the quasi-Newton strategies.
 Finite-difference options {'2-point', '3-point', 'cs'} and
 `HessianUpdateStrategy` are available only for 'trust-constr' method.
 hessp : callable, optional
 Hessian of objective function times an arbitrary vector p. Only for
 Newton-CG, trust-ncg, trust-krylov, trust-constr.
 Only one of `hessp` or `hess` needs to be given. If `hess` is
 provided, then `hessp` will be ignored. `hessp` must compute the
 Hessian times an arbitrary vector:

 ``hessp(x, p, *args) -> ndarray shape (n,)``

 where x is a (n,) ndarray, p is an arbitrary vector with
 dimension (n,) and `args` is a tuple with the fixed
 parameters.
 bounds : sequence or `Bounds`, optional
 Bounds on variables for L-BFGS-B, TNC, SLSQP and
 trust-constr methods. There are two ways to specify the bounds:

 1. Instance of `Bounds` class.
 2. Sequence of ``(min, max)`` pairs for each element in `x`. None
 is used to specify no bound.

 constraints : {Constraint, dict} or List of {Constraint, dict}, optional
 Constraints definition (only for COBYLA, SLSQP and trust-constr).
 Constraints for 'trust-constr' are defined as a single object or a
 list of objects specifying constraints to the optimization problem.
 Available constraints are:

 - `LinearConstraint`
 - `NonlinearConstraint`

 Constraints for COBYLA, SLSQP are defined as a list of dictionaries.
 Each dictionary with fields:

 type : str
 Constraint type: 'eq' for equality, 'ineq' for inequality.
 fun : callable
 The function defining the constraint.
 jac : callable, optional
 The Jacobian of `fun` (only for SLSQP).
 args : sequence, optional
 Extra arguments to be passed to the function and Jacobian.

 Equality constraint means that the constraint function result is to
 be zero whereas inequality means that it is to be non-negative.
 Note that COBYLA only supports inequality constraints.
 tol : float, optional
 Tolerance for termination. For detailed control, use solver-specific
 options.
 options : dict, optional
 A dictionary of solver options. All methods accept the following
 generic options:

 maxiter : int
 Maximum number of iterations to perform. Depending on the

 Maximum number of iterations to perform. Depending on the
 method each iteration may use several function evaluations.
 disp : bool
 Set to True to print convergence messages.

 For method-specific options, see :func:`show_options()`.
 callback : callable, optional
 Called after each iteration. For 'trust-constr' it is a callable with
 the signature:

 ``callback(xk, OptimizeResult state) -> bool``

 where ``xk`` is the current parameter vector. and ``state``
 is an `OptimizeResult` object, with the same fields
 as the ones from the return. If callback returns True
 the algorithm execution is terminated.
 For all the other methods, the signature is:

 ``callback(xk)``

 where ``xk`` is the current parameter vector.

 Returns

 res : OptimizeResult
 The optimization result represented as a ``OptimizeResult`` object.
 Important attributes are: ``x`` the solution array, ``success`` a
 Boolean flag indicating if the optimizer exited successfully and
 ``message`` which describes the cause of the termination. See
 `OptimizeResult` for a description of other attributes.

 See also

 minimize_scalar : Interface to minimization algorithms for scalar
 univariate functions
 show_options : Additional options accepted by the solvers

 Notes

 This section describes the available solvers that can be selected by the
 'method' parameter. The default method is *BFGS*.

 Unconstrained minimization

 Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
 Simplex algorithm [1]_, [2]_. This algorithm is robust in many
 applications. However, if numerical computation of derivative can be
 trusted, other algorithms using the first and/or second derivatives
 information might be preferred for their better performance in
 general.

 Method :ref:`Powell <optimize.minimize-powell>` is a modification
 of Powell's method [3]_, [4]_ which is a conjugate direction
 method. It performs sequential one-dimensional minimizations along
 each vector of the directions set (`direc` field in `options` and
 `info`), which is updated at each iteration of the main
 minimization loop. The function need not be differentiable, and no
 derivatives are taken.

 Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
 gradient algorithm by Polak and Ribiere, a variant of the
 Fletcher-Reeves method described in [5]_ pp. 120-122. Only the
 first derivatives are used.

 Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
 method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
 pp. 136. It uses the first derivatives only. BFGS has proven good
 performance even for non-smooth optimizations. This method also
 returns an approximation of the Hessian inverse, stored as
 `hess_inv` in the OptimizeResult object.

 Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
 Newton-CG algorithm [5]_ pp. 168 (also known as the truncated

 Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
 Newton method). It uses a CG method to the compute the search
 direction. See also *TNC* method for a box-constrained
 minimization with a similar algorithm. Suitable for large-scale
 problems.

 Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
 trust-region algorithm [5]_ for unconstrained minimization. This
 algorithm requires the gradient and Hessian; furthermore the
 Hessian is required to be positive definite.

 Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
 Newton conjugate gradient trust-region algorithm [5]_ for
 unconstrained minimization. This algorithm requires the gradient
 and either the Hessian or a function that computes the product of
 the Hessian with a given vector. Suitable for large-scale problems.

 Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses
 the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained
 minimization. This algorithm requires the gradient
 and either the Hessian or a function that computes the product of
 the Hessian with a given vector. Suitable for large-scale problems.
 On indefinite problems it requires usually less iterations than the
 `trust-ncg` method and is recommended for medium and large-scale problems.

 Method :ref:`trust-exact <optimize.minimize-trustexact>`
 is a trust-region method for unconstrained minimization in which
 quadratic subproblems are solved almost exactly [13]_. This
 algorithm requires the gradient and the Hessian (which is
 not required to be positive definite). It is, in many
 situations, the Newton method to converge in fewer iteraction
 and the most recommended for small and medium-size problems.

 Bound-Constrained minimization

 Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
 algorithm [6]_, [7]_ for bound constrained minimization.

 Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
 algorithm [5]_, [8]_ to minimize a function with variables subject
 to bounds. This algorithm uses gradient information; it is also
 called Newton Conjugate-Gradient. It differs from the *Newton-CG*
 method described above as it wraps a C implementation and allows
 each variable to be given upper and lower bounds.

 Constrained Minimization

 Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
 Constrained Optimization BY Linear Approximation (COBYLA) method
 [9]_, [10]_, [11]_. The algorithm is based on linear
 approximations to the objective function and each constraint. The
 method wraps a FORTRAN implementation of the algorithm. The
 constraints functions 'fun' may return either a single number
 or an array or list of numbers.

 Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
 Least SQuares Programming to minimize a function of several
 variables with any combination of bounds, equality and inequality
 constraints. The method wraps the SLSQP Optimization subroutine
 originally implemented by Dieter Kraft [12]_. Note that the
 wrapper handles infinite values in bounds by converting them into
 large floating values.

 Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a
 trust-region algorithm for constrained optimization. It swiches
 between two implementations depending on the problem definition.
 It is the most versatile constrained minimization algorithm
 implemented in SciPy and the most appropriate for large-scale problems.
 For equality constrained problems it is an implementation of Byrd-Omojokun
 Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When
 inequality constraints are imposed as well, it swiches to the trust-region
 interior point method described in [16]_. This interior point algorithm,
 in turn, solves inequality constraints by introducing slack variables

 in turn, solves inequality constraints by introducing slack variables
 and solving a sequence of equality-constrained barrier problems
 for progressively smaller values of the barrier parameter.
 The previously described equality constrained SQP method is
 used to solve the subproblems with increasing levels of accuracy
 as the iterate gets closer to a solution.

 Finite-Difference Options

 For Method :ref:`trust-constr <optimize.minimize-trustconstr>`
 the gradient and the Hessian may be approximated using
 three finite-difference schemes: {'2-point', '3-point', 'cs'}.
 The scheme 'cs' is, potentially, the most accurate but it
 requires the function to correctly handles complex inputs and to
 be differentiable in the complex plane. The scheme '3-point' is more
 accurate than '2-point' but requires twice as much operations.

 Custom minimizers

 It may be useful to pass a custom minimization method, for example
 when using a frontend to this method such as `scipy.optimize.basinhopping`
 or a different library. You can simply pass a callable as the ``method``
 parameter.

 The callable is called as ``method(fun, x0, args, **kwargs, **options)``
 where ``kwargs`` corresponds to any other parameters passed to `minimize`
 (such as `callback`, `hess`, etc.), except the `options` dict, which has
 its contents also passed as `method` parameters pair by pair. Also, if
 `jac` has been passed as a bool type, `jac` and `fun` are mangled so that
 `fun` returns just the function values and `jac` is converted to a function
 returning the Jacobian. The method shall return an `OptimizeResult`
 object.

 The provided `method` callable must be able to accept (and possibly ignore)
 arbitrary parameters; the set of parameters accepted by `minimize` may
 expand in future versions and then these parameters will be passed to
 the method. You can find an example in the scipy.optimize tutorial.

 .. versionadded:: 0.11.0

 References

 .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
 Minimization. The Computer Journal 7: 308-13.
 .. [2] Wright M H. 1996. Direct search methods: Once scorned, now
 respectable, in Numerical Analysis 1995: Proceedings of the 1995
 Dundee Biennial Conference in Numerical Analysis (Eds. D F
 Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
 191-208.
 .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
 a function of several variables without calculating derivatives. The
 Computer Journal 7: 155-162.
 .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
 Numerical Recipes (any edition), Cambridge University Press.
 .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
 Springer New York.
 .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
 Algorithm for Bound Constrained Optimization. SIAM Journal on
 Scientific and Statistical Computing 16 (5): 1190-1208.
 .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
 778: L-BFGS-B, FORTRAN routines for large scale bound constrained
 optimization. ACM Transactions on Mathematical Software 23 (4):
 550-560.
 .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
 1984. SIAM Journal of Numerical Analysis 21: 770-778.
 .. [9] Powell, M J D. A direct search optimization method that models
 the objective and constraint functions by linear interpolation.
 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
 and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
 .. [10] Powell M J D. Direct search algorithms for optimization
 calculations. 1998. Acta Numerica 7: 287-336.
 .. [11] Powell M J D. A view of algorithms for optimization without
 derivatives. 2007.Cambridge University Technical Report DAMTP

 derivatives. 2007.Cambridge University Technical Report DAMTP
 2007/NA03
 .. [12] Kraft, D. A software package for sequential quadratic
 programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
 Center -- Institute for Flight Mechanics, Koln, Germany.
 .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
 Trust region methods. 2000. Siam. pp. 169-200.
 .. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free
 implementation of the GLTR method for iterative solution of
 the trust region problem", https://arxiv.org/abs/1611.04718
 .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the
 Trust-Region Subproblem using the Lanczos Method",
 SIAM J. Optim., 9(2), 504--525, (1999).
 .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.
 An interior point algorithm for large-scale nonlinear programming.
 SIAM Journal on Optimization 9.4: 877-900.
 .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the
 implementation of an algorithm for large-scale equality constrained
 optimization. SIAM Journal on Optimization 8.3: 682-706.

 Examples

 Let us consider the problem of minimizing the Rosenbrock function. This
 function (and its respective derivatives) is implemented in `rosen`
 (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.

 >>> from scipy.optimize import minimize, rosen, rosen_der

 A simple application of the *Nelder-Mead* method is:

 >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
 >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
 >>> res.x
 array([1., 1., 1., 1., 1.])

 Now using the *BFGS* algorithm, using the first derivative and a few
 options:

 >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
 ... options={'gtol': 1e-6, 'disp': True})
 Optimization terminated successfully.
 Current function value: 0.000000
 Iterations: 26
 Function evaluations: 31
 Gradient evaluations: 31
 >>> res.x
 array([1., 1., 1., 1., 1.])
 >>> print(res.message)
 Optimization terminated successfully.
 >>> res.hess_inv
 array([[0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary
 [0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],
 [0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],
 [0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427],
 [0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]])

 Next, consider a minimization problem with several constraints (namely
 Example 16.4 from [5]_). The objective function is:

 >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

 There are three constraints defined as:

 >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
 ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
 ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

 And variables must be positive, hence the following bounds:

 >>> bnds = ((0, None), (0, None))

 The optimization problem is solved using the SLSQP method as:

In [6]:
def f(X):
 res = (X-np.ones(X.shape))**2
 return np.sum(res)

def df(X):
 res = 2*(X-np.ones(X.shape))
 return res

In [7]:
x0 = np.array([2, -10])
res = minimize(f, x0, method='CG', jac=df)

In [8]:
print(res)

In [9]:
type(res)

In [10]:
res.x

In [10]:

 The optimization problem is solved using the SLSQP method as:

 >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
 ... constraints=cons)

 It should converge to the theoretical solution (1.4 ,1.7).

 fun: 3.2047474274603605e-30
 jac: array([4.44089210e-16, -3.55271368e-15])
 message: 'Optimization terminated successfully.'
 nfev: 4
 nit: 1
 njev: 4
 status: 0
 success: True
 x: array([1., 1.])

Out[9]:
scipy.optimize.optimize.OptimizeResult

Out[10]:
array([1., 1.])

	Esercizio 1
	Esercizio 2: Function minimizeminimize

