11 Ottobre 2021

Vediamo ora come la proprieta di completetta di IR

parantisca che i punti della retts (esclusi quando si era in Q) sismo respoisanti ola vn n nero reale_ Limitianoci she vodiciTEOREMA: (Esistenza e unicità della radice n-esima) della radice n-esima) Vae R, Vne Nigoz, $\frac{1}{2}$! $b \in \mathbb{R}_+$: b = a(b si dice radice aritmetica n-erima di a e si scrive Na:=b se n=2) radice aritmetica è $n \vee m \in ro \geq 0$. (74 non e -2 !!) $\sqrt{4} = 2$

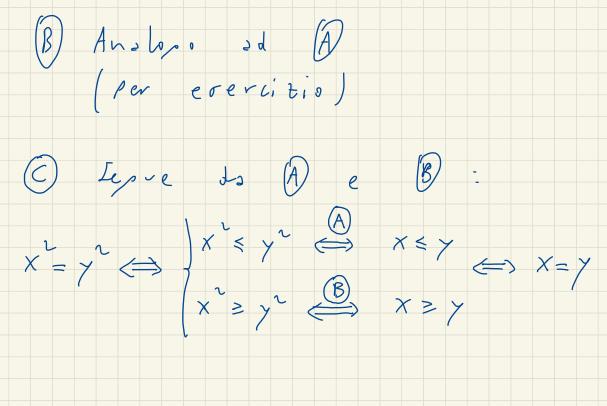
OSS.: la radice aritmetica e

$$\sqrt{3} = 6$$
 $\sqrt{4} = 2$
 $\sqrt{3} = 6$
 $\sqrt{4} = 2$
 $\sqrt{4} = 2$

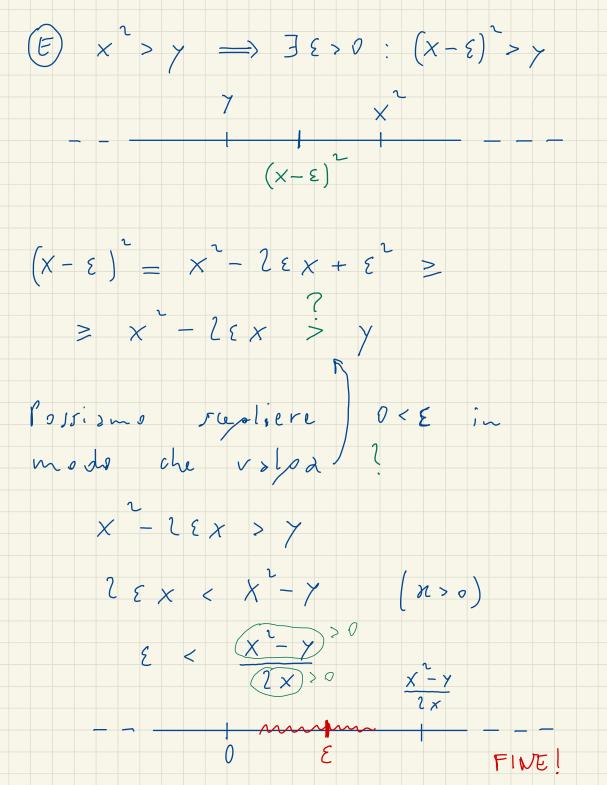
Din o strere mo il reorema precedente nel coro h=2_ TEOREMA: (Esistenta e unicità olella radice) VaeR+ $\frac{1}{2} \cdot b \in \mathbb{R}_{+} : b^{2} = a$ (si serive $\sqrt{2} := b$) Yer din o strore tale restema e necessirio un lemma prehminare_

LEMMA: $\forall n, \gamma \in \mathbb{R} : \mathbf{x}, \gamma \geq 0$ Ji ha: $\widehat{A} \times ^{1} \leq y^{1} \iff x \leq y$ $(B) \quad x^2 \geq y^2 \iff x \geq y$ Atrenzione! Nella prova non si pro vosre la vodice gradrala

(A) l'ossismo suppore che y>0 (>) Vrimenti (A e ovvia) X \leq \gamma (x-y)(x+y)V dividende embo i menbri delle oli requatione per x+y: (=) $x-y \leq 0$ (=) $x \leq y$ OSS.: Si può provare che: nEIN $\times^{\prime\prime} \in \gamma^{\prime\prime} \iff \chi \in \gamma$ (Esercizio)



$$\begin{array}{c} x + \varepsilon \left(2n+1\right) < \gamma \\ & \varepsilon \left(2n+1\right) < \gamma - x \\ & \varepsilon < \frac{(2n+1)}{(2n+1)} > 0 \\ & \varepsilon \\ & \frac{(2n+1)}{(2n+1)} > 0 \\ & \frac{(2n+1$$



Si provire une versione penerste del le mms precedente: LEMMA (penersu) $\forall n \in \mathbb{N} : n > 0$ \forall n, $\gamma \in \mathbb{R}$: \mathbf{x} , $\gamma \geq 0$ \bigcirc \times $^{n} = \gamma$ $^{n} \iff \times = \gamma$ (), olimostra in modo Ji mile al price dente)

Torniamo alla prova del

TEOREMA: (Esistenta e unicità olella radice)

$$\forall a \in \mathbb{R}_{+}$$
 $\exists b \in \mathbb{R}_{+}$

(Ji scrive $\forall a := b$)

DIM, (Teorem, esist. della V)? Ji, Strotto la proprieta Li Considerismo)'insieme: $A = \left\{ c \in \mathbb{R} \mid c \geq 0, \quad c \leq 2 \right\}$ $\bullet \quad 0 \in A \implies A \neq \emptyset$ · A = superiormente limitats: VCEA: $C^{1} \leq 2 \leq (2+1)^{2} \Longrightarrow$ \Rightarrow $C^{1} \leq (2+1)^{1}$ da A Lemma **=>** C ≤ 2+1 Vc e A

2+1 te un mappionsuse di A => A e sup. himitato Dalls propriets di completezza ∃ svp A =: b € IR+ Dimostrismo che: b=a coricche: b = Va Ji procede per 2 ssirolo

no stran do che nan pro essere

b < a, b > a Sepponiamo che: dal lemma D (con x=b, y=a) $\exists \ \varepsilon > 0 : (b+\varepsilon)^2 < \lambda$ ⇒ b + ε ∈ A > b+ E < sup A = b \Rightarrow $\xi \leq 0$ A JJURDO!

b > 2 : dal lemma (E) (con x=b, y=a) $\exists \ \varepsilon > 0 : (b - \varepsilon)^2 > \lambda$ $\Rightarrow \forall c \in A : c^2 \leq a < (b-\epsilon)^2$ \Rightarrow $c^{2} \leq (b-\epsilon)^{2}$ da (A) Lemma \Rightarrow $c \leq b - \epsilon$ $\forall c \in A$ => b-E e un marsiorante ma b = sup A = il più
picco lo olei mappioranti di A ASJURDO

Dunque, dere e s ser c $b^{2} = 2$ Rimane da provare l'unicitàte della radice quadrata Syronismo de 3 b, b, e R+: $b_1 = \lambda = b_2$ \Rightarrow $b_1 = b_1$ Dol bemma (C) b₁ = b₁ FINE!

$$\frac{5}{3} = \sqrt{3} = \left(\sqrt{3}\right)^{5}$$

$$\frac{7}{3} = 2$$

JUCCEJJIONI NUMERICHE:

DEF.: (Successione di numeri)

Vn. successione di numeri redi

e vn. funtione: $f: IN \longrightarrow IR$ $h \longmapsto f(n) = 2n$ I elemento

 $f(1) = a_1$ If elements $f(2) = a_2$ III elements \vdots

Uns successione si denots:

(an)new, (an)n

Tolvollo, poot essere conveniente escludere n=0 obsi valori del olominio: 1N = 1N 1 20} trumpi: $a_n = \frac{n}{n+1}$, $h \in \mathbb{N}$ $b_n = \frac{(-1)^h}{h}$ n E IV

Non oi dere con son dere Juliersione (2n) nEIN f: W --- R $h \longrightarrow f(n) = a_n$ con l'insieme desti élémenti che compono o no: $Im f = \{a_n\}$ n e M f(IN) Nella successione à prescritto I ordine in ai compaiono phelementi.

$$\frac{E_{0}}{2\pi} = \frac{1}{h}$$

DEF .: (2n)nEIN JULCE 15ishe A = { an | n \in IN } (2n) nem si dice: · SUPERIORMENTE LIMITATA Je A e oup. limitaro • INFERIORMENTE LIMITATA Je A ē inf. limitaro LIMITATA re A e limitato -

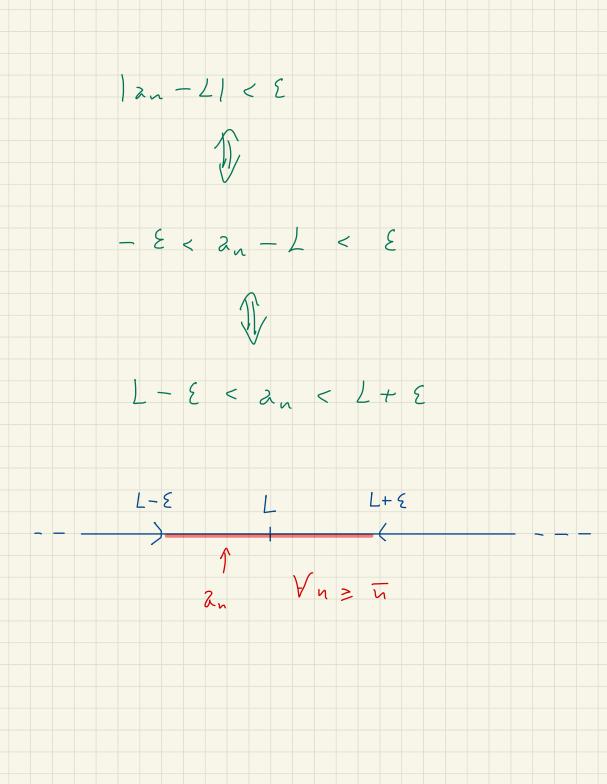
$$\frac{LA}{A} = \frac{NO}{10} = \frac{N-1}{10}$$

$$\frac{1}{10} = \frac{N-1}{10}$$

$$\frac{1}{10} = \frac{N-1}{10}$$

$$\frac{1}{10} = \frac{1}{10}$$

 $a_n = \frac{h}{h+1}$ 5i Lormshitts il Lorro che n du si devicind in definitamente
2 1? DEF.: (limite finite) $(2n)_n$, $L \in \mathbb{R}$ Si dice the $\lim_{n\to+\infty} a_n = L$ re $\forall \varepsilon > 0$, $\exists \overline{n} = \overline{n} (\varepsilon) \in \mathbb{N} : \forall n \geq \overline{n} :$ $|a_n - L| < \varepsilon \qquad \left(L - \varepsilon < a_n < L + \varepsilon \right)$ (2n)n si dice CONVERGENTE



Vedismo l'esempio di prima: $a_{n} = \frac{h-1}{h}$ $\frac{h-1}{h}$ $\frac{h-1}{h}$ 2 = 1 Firsto un E>0 arbitrario, posao Provare un h= n(E) in modo the: \text{\text{\$\pi\$ n \geq \text{\$\pi\$}} $\left| \frac{n-1}{n} - 1 \right| < \varepsilon$ (Idea: pit si de si de va che $2n = \frac{n}{n-1}$ sis vicino 2 1 [\(\xi\) piccolo\]
e pi\(\ta\) sirs ne cessivi\(\pi\) considersre le "positioni » l'e desti du [Goe, n do vrst essere pronde])-

= $\frac{n-1}{n}-1$ $< \varepsilon$

 $\forall n \in \mathbb{N}$: $n > \frac{1}{5}$

VneW:
$$n > (1) + 1 \Rightarrow (n-1) < \epsilon$$

Nors: p ore cisione, re $\frac{1}{\epsilon}$

non fosse intero,

possis no sephere:

 $n = [1] + 1 > 1$
 $n = [n] + 1 > 1$

J:
$$\frac{1}{1}$$
 $\frac{1}{1}$ \frac

$$n = 106$$
 $a_{106} = \frac{105}{106} \approx 0,9907$

$$\mathcal{E} = 0,0001 = \frac{1}{10^4}, \overline{n} = 10^4 + 1$$

$$n \ge n = 10^4 + 1 \implies \frac{n-1}{n} - 1 < \frac{1}{10^4}$$

$$n = 10.005$$

$$2 = 10.004 = 0.39990$$

$$2_{10.005} = \frac{10.004}{10.005} = 0,99990005$$

Esweiti:

Dimestrore che:

$$\lim_{n\to+\infty} \frac{1}{n} = 0$$
 (yousle 3 prims)

 $\lim_{n\to+\infty} \frac{1}{n^2} = 0$

$$\left(\begin{array}{c} \text{SVO L G I MEN TO}: \\ \frac{1}{h^{2}} - 0 \right) < \Sigma \\ \frac{1}{h^{2}} \\ \frac$$