1 Integrazione per parti

Viene usata nei casi come $\int x^k \sin x$

1.1 Variante del teorema fondamentale del calcolo

Proposizione: Sia $h:I\to J$ derivabile e $f:J\to\mathbb{R}$ continua $(I,J\subseteq\mathbb{R}$ intervalli aperti. Definiamo $F:I\to\mathbb{R}$

$$F(x) = \int_{c}^{h(x)} f(t)dt$$

Allora F è derivabile in ogni $x \in I$ e vale F'(x) = f(h(x))h'(x).

Dimostrazione: scrivo

$$I_c(z) = \int_c^z f(t)dt \quad \forall z \in J$$

Allora si scrive $F = I_c \circ h$.

Dalla formula per la derivata di funzioni composte otteniamo

$$F'(x) = I'_c(h(x))h'(x) = f(h(x))h'(x)$$

2 Formula per il cambio variabile

Teorema: I, J intervalli aperti, $h: I \to J$ con derivata h' continua su I $f: J \to \mathbb{R}$ continua. Allora $\forall \alpha, \beta \in I$ vale

$$\int_{h(\alpha)}^{h(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(h(t))h'(t)dt$$

Dimostrazione: siano $F:I\to\mathbb{R},G:I\to R,F(z)=\int_{h(\alpha)}^{h(z)}f(x)dx,G(z)=\int_{\alpha}^{z}f(h(t))h'(t)dt$

Le funzioni integrande sono continue, h' è continua. Dunque F e G sono derivabili in I.

Vale F'(z) = f(h(z))h'(z) e G'(z) = f(h(z))h'(z) $\forall z \in I$

Dunque F - G è costante su I.

Poiché $F(\alpha) = 0, G(\alpha) = 0$, si conclude che F(z) = G(z) $z \in I$

3 Integrali generalizzati

Definizione $f:[a,+\infty[\to\mathbb{R} \text{ continua.}]$

Si dice che f è integrabile in senso generalizzato su $[a, +\infty]$ se

$$\exists \lim_{z \to +\infty} \int_{a}^{z} f(x)dx =: \int_{a}^{+\infty} f(x)dx$$

La definizione per $f:]-\infty,b] \to \mathbb{R}$ è omessa perché analoga

Definizione: $f:]a,b] \to \mathbb{R}$, continua. Si dice che f è integrabile in senso generalizzato su]a,b] se

$$\exists \lim_{z \to a^+} \int_z^b f(x) dx =: \int_a^b f(x) dx$$